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This work aims to develop an auto-
machine learning method using Mid-
Infrared (MIR) spectroscopy data to 
determine the cold filter plugging point 
(CFPP) and kinematic viscosity at 40 
ºC of biodiesel, diesel, and mixtures 
samples. The biodiesel was obtained 
by the transesterification reaction and 
later purified. The first dataset was 
composed of 108 blends (biodiesel 
obtained from different biomass such 
as soy, corn, sunflower, and canola) 
with binary, ternary and quaternary 

mixtures. The second dataset was composed of 227 blends of diesel-biodiesel and diesel-biodiesel-
ethanol, respectively. The physical properties of the samples were obtained according to ABNT NBR 
14747 and ABNT NBR 10441, respectively. The MIR Spectroscopy data were acquired from 7,800 to 450 
cm-1, with a 4 cm-1 resolution and 20 scans. The spectra’ baseline alignment was carried out using the 
asymmetric least squares method. A Savitzky–Golay filter was applied to a set of digital data points to 
smooth the data. This work used a first-order polynomial and a zero derivative function to smooth the 
spectra. The dataset was split into training and test sets using the function CreateDataPartition from the 
caret package. It was adopted 70% for training and 30% for test sets. In this work, the model training 
process was carried out using the open-source Python library LazyPredict. The LazyPredict returns the 
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trained models and their performance metrics. The kinematic viscosity at 40 ºC of the biodiesel samples 
and their blends could be modeled using the MIR Spectroscopy dataset using different auto-machine 
learning algorithms. The RMSEP (Root Mean Square Error of Prediction) (≤ 0.02 mm2 s-1) was similar to 
the experimental error obtained after log transformation. The CFPP of the biodiesel samples and their 
blends could be modeled using the MIR Spectroscopy dataset by different auto-machine learning algorithms 
with an RMSEP (≤ 1.6 ºC) similar to the experimental error obtained by traditional methodology. Based on 
the lower computational time and the same performance observed by the RMSEP and R2 (coefficient of 
determination) values from different algorithms, it is recommended to use Ridge or Ridge Cross-Validation 
Regression models for both physical properties using MIR Spectroscopy data.

Keywords: auto-machine learning algorithms, biofuels, cold filter plugging point, ridge regression, 
kinematic viscosity at 40 ºC

INTRODUCTION 
Due to population growth and global economic development, the world faces energy demand problems. 

Therefore, global energy demand triggers the excess consumption of fossil fuels. This phenomenon 
produces the following main issues: (1) excess global pollution accentuated by the increase in the 
greenhouse effect, (2) global warming and climate change, and (3) depletion of fossil fuels. Renewable 
energy emerges as an alternative for the energy supply faced with these severe problems. Biodiesel has 
been recognized to produce power with lower environmental impacts than fossil fuels.1

Furthermore, with the uncertainty of fossil fuels regarding their future availability and the need for green 
fuels, there is increasing attention to using biodiesel as an alternative fuel. As biodiesel can be produced 
by different biomasses, such as agricultural residues, these can also serve as raw materials for biofuel 
production, according to Bobadilla et al. (2018).2

Biodiesel is considered the future fuel, especially as the trend is for oil to become so scarce that its 
price becomes unaffordable. Furthermore, the world is looking for less polluting solutions to maintain the 
planet’s sustainability. The good news is that Brazil is one of the largest biodiesel producers globally and 
has superior technology, generating a higher quality product. Biodiesel production also reduces the need 
to import oil, balancing the country’s economy.3-4 

Several parameters are recommended by the ANP (National Petroleum, Natural Gas, and Biocombustible 
Agency) to verify the quality of biodiesel and its blends. The CFPP and the kinematic viscosity at 40 ºC 
were chosen in this work.5 Concerning the CFPP at low temperatures, biodiesel partially solidifies or 
loses its fluidity, leading to fuel flow interruption and clogging of the filtration system, causing problems 
in engine starting.6 Meanwhile, the kinematic viscosity at 40 ºC increases in value with the length of the 
carbon chain and the degree of saturation and influences the burning process in the engine’s combustion 
chamber.6 However, the traditional methodologies were slow and made it difficult to make a quick decision 
about the quality of these products. Therefore, using other analytical techniques faster and more reliable is 
recommended than traditional ones. In this context, infrared spectroscopy meets these requirements and 
is a well-established technique in analytical chemistry.

Studies in the literature used machine learning algorithms to predict the properties of biodiesel and 
diesel-biodiesel blends. Several articles published in the literature concerning this application were 
highlighted. Pimentel et al. (2006)9 evaluated the application of calibration models multivariate by PLS 
(Partial Least-Squares) based on MIR (Mid-Infrared) Spectroscopy (4000 to 650 cm-1; ATR: Attenuated Total 
Reflectance) and NIR (Near-Infrared) Spectroscopy (12000 to 4000 cm-1; optical path = 1.0 cm) spectra to 
predict the biodiesel content in diesel oil blends considering the presence of vegetable oils. According to 
the authors, the F test (with a 95% confidence level) showed no statistically significant difference between 
the models built using these techniques. However, the F test should not be used compared to the models 
since the RMSEP (Root Mean Square Error of Prediction) values do not follow the F distribution or chi-
square distribution.7 Baptista et al. (2008)10 evaluated NIR spectroscopy for predicting biodiesel properties, 
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such as the iodine index, the CFPP, density at 15 ºC, and viscosity kinematics at a temperature of 40 ºC. 
The CFPP biodiesel prediction model using PLS produced an R2 (coefficient of determination) of 0.951 
and RMSEP 1.0 ºC. The best prediction model for density at 15 ºC was obtained by PLS with R2 of 0.999 
and RMSEP of 0.9 kg m-3. However, it is noticed that this study was carried out with only 71 samples 
(49 samples for validation test and 22 samples for test samples) to predict the CFPP.8 Lira et al. (2010)11 
prepared blends using soy methyl esters, castor oil, cottonseed oil, canola oil, sunflower oil, and diesel 
samples from different regions of Brazil. For the density prediction model using NIR spectroscopy data, 
the PLS model showed R2 values of 0.99 and RMSEP of 0.56 kg m-3. This prediction was adequate and 
showed an error with similar performance to those obtained for traditional techniques.9 Balabin and Safieva 
(2011)12 developed an artificial neural network (ANN) model to predict fuel properties, including the CFPP, 
based on a NIR Spectroscopy dataset. The ANN model showed a better performance when compared to 
the other multivariate linear regressions. It was a surprise that the authors used a multiple linear regression 
(MLR) because it is well known that near-infrared spectra were highly correlated. The multicollinearity 
must be considered, which these authors cannot ignore.10 Filgueiras et al. (2014)13 compared the PLS 
and SVM (Support Vector Machine) models’ performance for predicting API gravity, kinematic viscosity, 
and water content in petroleum using Fourier Transform Infrared Spectroscopy with Attenuated Total 
Reflectance (FTIR-ATR). The authors only used 68 samples to carry out this work, and the performance 
of the SVM model was better than the PLS model for predicting kinematic viscosity. It was noticed that the 
RMSEP reported for both models was higher than the actual values of this property. Probably, the authors 
committed a mistake.11

Cunha et al. (2017)15 used PLS and SVM to model the relationship between the FT-IR Spectroscopy 
data and density, refraction, and CFPP of pure biodiesel samples and their mixtures.12 According to the 
authors, it is not recommended to use the F-test, and the SWTP (Sum of Wilcoxon Test Probability) is 
the better choice.13 The best CFPP prediction was obtained using SVM regression, which showed an 
equal RMSEP at 0.6 ºC. The PLS model resulted in the best density and refractive index prediction with 
RMSEP values ​​equal to 0.2 kg m-3 and 0.0001, respectively. The predicted values for physical properties 
were similar to those obtained by conventional techniques, demonstrating the feasibility of using machine 
learning techniques when coupled with NIR spectroscopy.12 

Through the bibliographic research carried out, it was observed that the most used spectroscopic 
techniques involving machine learning algorithms were NIR and MIR spectroscopies. On the other hand, 
the main characteristics of this work that differ from similar results reported in the literature were the high 
number of samples, the different sources of raw material used in the production of biodiesel, and the wide 
range of physical properties measured in the biodiesel samples and their mixtures. 

Researchers spend enormous time searching for the most suitable algorithm and preprocessing 
methods to solve a predictive task. However, automatic machine learning is a viable alternative for solving 
numerous regression and classification problems. In this sense, Auto Machine Learning (AutoML) is a 
modern approach to automated model retrieval, training procedures, and hyperparameter optimization 
for specific problems. One of the most famous AutoML methods is meta-learning (MTL), which proposed 
to develop models that offer algorithm recommendations and parameter values ​​to be adopted for each 
new problem. This segment has gained notoriety due to its excellent ability to generate suitable models 
without human intervention.14 Its main objective is to reduce the number of tested algorithms to optimize 
experimentation time with minimal loss in the quality of results.15-16

Some technologies facilitate the steps of an AutoML project, such as Auto-Keras,17 Auto Sklearn,18 
Cloud AutoML,19 H2O,20 MLBox,21 Lazy Predict22. All these tools have specific configurations. For the 
present work, the Lazy Predict framework is more appropriate, considering that it has an open-source 
code, comprises steps deemed necessary for evaluating MTL, and can potentially train many models. In 
addition, it is applicable in the Python computational program,23 which presents a simple, effective, and 
versatile language.
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Additionally, this is the first work in this area to employ automatic machine learning (Auto ML) methods to 
predict biodiesel’s physical properties using MIR spectroscopy data. Therefore, this work aims to develop 
an auto-machine learning method to determine the following physical properties: CFPP and kinematic 
viscosity at 40 ºC of biodiesel, diesel, and mixtures samples using MIR Spectroscopy data. 

MATERIALS AND METHODS
The methodology of producing biodiesel and its blends can be found in the literature.1

Dataset 1: Mixtures of Biodiesel
The pure samples were composed of pure biodiesel from soybeans, canola, sunflower, corn, and 

biodiesel provided by a distributor in southern Brazil, totaling 41 samples. Mixtures containing the four 
different sources of biodiesel (soybean, canola, sunflower, and corn) were prepared in triplicate and 
volumetric base. Thus, as 36 distinct mixtures were established, it was necessary to prepare 108 blends. 

Tables S1 – S3 (Supplementary Material) show the compositions of the different mixtures of biodiesel 
samples in percentage volumetric. A distributor provided 2 liters of biodiesel in the southern region to 
compose the blends. Canola biodiesel has the value of the most distinct cold filter plugging point among 
the types of biodiesels. In this study, it was chosen to compose the binary mixture with biodiesel from 
the southern region. In summary, Dataset 1 consists of 40 pure samples, 61 binary, 27 ternary, and 21 
quaternary samples, 149 samples.

Dataset 2: Diesel-biodiesel and diesel-biodiesel-ethanol blends
For Dataset 2 preparation, diesel-biodiesel and diesel-biodiesel-ethanol blends were prepared in 

triplicate and volumetric base. Pure samples used in the preparation of the mixtures of this step were 
also included in the dataset, totaling 33 pure samples (Diesel S-10, Diesel S-500, Standard pure diesel, 
rapeseed biodiesel, soy biodiesel, sunflower biodiesel, corn biodiesel, biodiesel from the southern region 
and biodiesel from a distributor in Rio de Janeiro State). 2 liters of soy biodiesel, 1 liter of sunflower 
biodiesel, 1 liter of canola biodiesel, 1 liter of corn biodiesel, 1 liter of biodiesel from the south region, 0.5 
liter of biodiesel from R.J., 12 liters of S-10 diesel, 5 liters of S-500 diesel, 1.5 liters of pure standard diesel 
(no biodiesel added) and 0.5 liter of anhydrous ethanol to compose the mixtures.

As a representative of diesel in ternary blends, the Diesel S-10 was chosen for having a higher cetane 
number (48) than the S-500 (42) and for offering to any diesel vehicle, even those manufactured before 
2012, better engine conservation and reduced maintenance costs. Soybean biodiesel was elected as the 
representative of biodiesel in the blends for being a widespread oleaginous source in producing this biofuel 
to compose the ternary mixtures. Table S4 (Supplementary Material) shows the compositions (% v/v) of 
the 16 ternary mixtures between the Diesel S-10, soybean biodiesel, and anhydrous ethanol.

Diesel S-10 (10 ppm sulfur), S-500 (500 ppm sulfur), and standard diesel (pure) were used in the 
composition of the mixtures. Table S5 (Supplementary Material) shows the 34 binary diesel-biodiesel 
mixtures prepared in triplicate, resulting in 102 samples.

CFPP
The CFPP is the temperature, in ºC, at which a specific sample volume does not pass through a metal 

filter standard in a specified period when cooled under certain conditions. The method is based on cooling, 
with a rate of 1°C/min, a volume of 45 mL sample, which is sucked into a pipette through a standardized 
metal mesh filter under a controlled vacuum. The procedure is repeated as many times as possible until 
the amount of crystals that separate from the solution is sufficient to interrupt or reduce the circulation of 
the sample through the filter. Alternatively, this procedure is repeated if the time required to fill the pipette 
exceeds 60 seconds or if the sample fails to return entirely to the test container before being cooled 
another 1 ºC. The temperature at which the final filtration was started is the cold filter plugging point. The 
CFPP tests were performed on TANAKA brand equipment, model AFP-102. The measurements were 
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obtained according to ABNT NBR 1474724 and specified by the ANP Resolution 45/20145. The repeatability 
of the measurement method was 1.8 ºC, and the reproducibility was 2.0 ºC for CFPP (ºC), with a 95% 
confidence level. The range of observed variation for the dataset under consideration was -26.0 ºC to 7.0 
ºC, with a measurement error equal to 1.6 ºC. 

Kinematic viscosity at 40 ºC
Kinematic viscosity is a property that measures resistance to flow under the gravity of a certain mass 

of fluid concerning its volume, which can be understood as the ratio between the dynamic viscosity 
and the specific mass of the liquid. The sample was homogenized in the original bottle during viscosity 
measurements. An aliquot of 10 mL was filtered and transferred via filter-syringe (PTFE 0.2 µm and 25 
mm) for the Cannon-Fenske capillary viscometer. The sample was sucked above the upper line, and the 
time taken for the upper meniscus to pass successively through the two calibration marks was noted. 
Ten measurements of this time were carried out. The measurements were obtained according to ABNT 
NBR 1044125 and specified by the ANP Resolution 45/20145. The repeatability of the kinematic viscosity 
measurement method was 0.0155 mm2 s-1, for a confidence level of 95%, and the reproducibility of 0.0279 
mm2 s-1. The observed range of variation for the dataset under consideration was 2.6629 to 4.8524 mm2 
s-1 with a measurement error equal to 0.0267 mm2 s-1.

MIR Spectroscopy
The MIR Spectroscopy data were acquired in the range of 7800 to 450 cm-1, with a resolution of 4 

cm-1, data intervals of 1 cm-1, and 20 scans. The Horizontal ATR with zinc selenide (ZnSe) crystal from 
PIKE Technologies coupled to the Perkin Elmer infrared spectrophotometer model FT-MIR/NIR Frontier. 
The measurement of reflectance was transformed as follows:  . Samples of mixtures of different 
biodiesel oils were analyzed placing 0.2 mL of each combination in the sample holder (crystal) – the 
mid-infrared spectra of blends and pure biodiesel. Tissue papers moistened in distilled water followed by 
tissue moistened with ethyl alcohol were used to clean the surface of the crystal. After evaporation of ethyl 
alcohol, the blank spectrum was acquired to verify the crystal’s absence of residues and contaminants.

Softwares
The Python version 3.9.5,23 R version 4.0.2,26 RStudio version 1.4.1717,27 and Visual Studio Code version 

1.58.2 for Windows 64 bits were used in this work. LazyPredict Module builds many basic models without 
much code and helps understand which models work better without parameter tuning. The documentation 
can be found on the site: https://lazypredict.readthedocs.io. The computational time to build 43 regression 
models was inferior to 5 minutes using this dataset for each property.

Hardware
The statistical analysis was carried out on Notebook, Core i7, 8th Generation, 16 GB RAM, 256 GB 

SSD, and Video Nvidia GEFORCE GTX 1650.

RESULTS AND DISCUSSION
MIR Spectroscopy data of the biodiesel samples

MIR Spectroscopy of pure biodiesel from five different sources and their blends (binary, ternary and 
quaternary) were obtained in the spectral region from 4000 to 680 cm-1. Figure 1 (left) shows the raw 
spectra of the biodiesel samples and their blends. As shown in Figure 1 (left), the sample (Am158: indicated 
by the red line) has a different behavior from the similar examples that make up the triplicate samples. This 
distinct behavior was attributed to water absorption, probably due to an error in cleaning the equipment 
between sample measurements. For this reason, it was necessary to remove it from the dataset. 

In addition, the signal observed in the spectral region between 2400 to 2300 cm-1, also observed in 
Figure 1 (left), was identified as the crystal response signal of zinc selenide (ZnSe) of the ATR accessory 
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and not of the spectral band of biodiesel samples. For this reason, it was decided to replace this region 
using the mean of 50 neighbor variables above and below this part of the spectra. 

Figure 1. Raw mid-infrared spectra of the biodiesel samples (left) and after sample removal 
(Am158), followed by the replacement of the peak region assigned to the ZnSe crystal by 
the average of 50 variables above and below the region (right).

Interpretation of MIR Spectroscopy data of the biodiesel samples
The MIR Spectroscopy data region between 3000 and 2840 cm-1 showed C- H’s fundamental stretching 

bands. The range between 1750 and 1730 cm-1 displays the carbonyl stretching band from the mid-
range infrared spectra. The spectral region between 1500 and 1400 cm-1 displays bands out of plane 
bending vibration of the mid-infrared spectra. The spectral region between 1300 – 1000 cm-1 is where 
the fundamental stretching bands of C–O appear. The part between 750 – 700 cm-1 (methylene rocking 
vibration) indicates a long-chain linear aliphatic structure. Table I summarizes the interpretation of the MIR 
Spectroscopy data of the biodiesel samples.

Table I. Summary of MIR spectroscopy interpretation of biodiesel samples

Region Wavenumber, cm-1 Probably group Class of compound

1 3000 – 2840 ν C – H Alkanes

2 1750 – 1730 ν C = O Carbonyl compounds

3 1500 – 1400 δ C – H Alkanes

4 1300 – 1000 ν C – O Carboxylic acids, Esters

5 750 – 700 δ C – H (CH2)n; n ≥ 4
ν = stretching vibration; δ = out of plane bending.28

Baseline alignment and smoothing of the infrared spectra by the Savitsky-Golay method
All spectra’ baseline alignment was carried out using the asymmetric least squares method.29 Lately, 

a first-order polynomial and a zero derivative function have been used to smooth the spectra.30 Figure 1 
(right) shows the infrared spectra after applying baseline alignment and smoothing.
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Exploratory data analysis using principal component analysis (PCA)
If the PCA model is made for a dataset from the same population, the orthogonal and score distances 

can find outliers and extreme objects. One of the ways to do this is to compute critical limits for the 
distances assuming that they follow a specific theoretical distribution. The residual/distance for this PCA 
model showed two critical limits: the dashed line is a limit for extreme objects, and the dotted line is a 
limit for outliers. 

Principal component analysis (PCA) applied to MIR Spectroscopy data
Table II summarizes the PCA analysis for the MIR Spectroscopy dataset. The explained variance (%) 

determined the optimal number of principal components of the PCA model. The last number of components 
was used when the explained variance became less than 1%. In this case, six PCs were used for the PCA 
model.

Table II. Summary of the PCA (class PCA) for the MIR Spectroscopy dataset. Type of limits: (ddmoments) calculates 
critical limits for distance values using data-driven moments approach, alpha = 0.05, and gamma = 0.01. Alpha is the 
significance level for detecting extreme objects, and gamma is for detecting outliers.

PC Eigenvalues Explained Variance Cumulative explained 
variance Nq Nh

1 1537.444 46.30 46.30 1 19

2 1021.223 30.75 77.05 1 1

3 336.135 10.12 87.17 1 1

4 157.657 4.75 91.92 1 1

5 91.634 2.76 94.68 1 1

6 57.298 1.73 96.40 2 1

7 27.859 0.84 97.24 2 1

8 18.264 0.55 97.79 2 1

9 17.000 0.51 98.30 2 1

10 12.434 0.37 98.68 3 1

11 8.956 0.27 98.95 2 1

12 6.268 0.19 99.13 2 1
Nq and Nh are the numbers of the degree of freedom (DoF) associated with h0 and qo, scaling factors, respectively.

However, when the dataset contains outliers using the classic estimators, the classical PCA is 
inappropriate based on the conventional mean and variance values. In these cases, the mean and variance 
of the corresponding distance are replaced with their robust analogs, namely median and interquartile 
range statistics.31 Figure 2 shows the graph of distances obtained by the classical PCA and Robust PCA.
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Figure 2. Distances (top left): Orthogonal distance, q versus Score distance, h; Distances (top right): Orthogonal 
distance, (q/q0) versus Score distance, (h/h0); Distances (down left): Orthogonal distance, log(1+(q/q0)) versus 
Score distance, log(1+(h/h0)); Distances (down right): Orthogonal distance, log(1+(q/q0)) versus Score distance, 
log(1+(h/h0)).

The distance plot is well-known and intensively employed. If the distances are spread, applying a simple 
log transformation of the axes can improve the plot visibility, as shown in Figure 2 (down left: Classical 
PCA, downright: Robust PCA). Figure 2 shows the distance plot for a classical PCA (top) and robust PCA 
(top) when the distance values were normalized. The number of outliers remained equal to two regardless 
of the PCA models used: classic or robust (Am 114 and Am 351). As the outlier number was minimal, it was 
decided to keep them in the MIR Spectroscopy dataset.

Splitting the datasets into training and test sets
The datasets were split into training and test sets using the function CreateDataPartition from the caret 

package.32 The splitting is based on the outcome. For numeric y, the sample is split into sections based on 
percentiles, and sampling is done within these subgroups. The number of percentiles is set via the groups’ 
argument for this function. It was adopted 70% for training and 30% for test sets.

Selecting the prediction model using auto-machine learning
Automated machine learning (Auto-ML) was used to reduce the workload of data training, hyperparameter 

tuning, and others. The model training process was carried out using the open-source Python library 
LazyPredict.22 This library automates the model training pipeline and speeds up the workflow. This Python 
library contains 43 algorithms for multivariate regression tasks. The Python code line inserts the training 
and test sets for x (features) and y (response), respectively. The LazyPredict returns the trained models 
and their performance metrics; it is an advantage. Furthermore, one can compare the performance metrics 
of each model, and it is possible to tune the best model to improve the performance if desired.
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Predicting the CFPP of biodiesel samples using MIR Spectroscopy data
Table III summarizes the results obtained for the predicted models using R2 and RMSEP as the figures 

of merit for the CFPP of biodiesel samples. In this table, it was only reported predict models with R2 ≥ 0.70. 

Table III. Figures of merit from predicting models of CFPP of biodiesel samples using the MIR Spectroscopy data

Model R2 RMSEP, 0C Time Taken, s

Bayesian Ridge 0.95 1.38 0.25

Lasso Lars CV 0.95 1.39 8.73

Ridge 0.94 1.45 0.09

Ridge CV 0.94 1.45 0.10

AdaBoosting Regressor 0.94 1.46 4.17

Orthogonal Matching Pursuit CV 0.94 1.49 0.48

Extra Trees Regressor 0.93 1.60 6.95

Huber Regression 0.93 1.64 0.78

MLP Regressor 0.92 1.69 3.22

Linear SVR 0.91 1.76 1.66

Passive Aggressive Regressor 0.86 2.25 0.23

Tweedie Regressor 0.86 2.26 0.21

Transformed Target Regressor 0.85 2.32 0.22

Linear Regressor 0.85 2.32 0.15

Lasso Lars IC 0.83 2.46 0.35

Decision Tree Regressor 0.81 2.60 0.43

K Neighbors Regression 0.77 2.86 0.08

Random Forest Regressor 0.74 3.06 21.93

Kernel Ridge 0.70 3.31 0.08

Bagging Regressor 0.70 3.31 2.13

Concerning the algorithm’s performance based on the highest R2 and lowest RMSEP, the Bayesian 
Ridge, Lasso Lars CV, Ridge, Ridge CV, AdaBoosting, Orthogonal Matching Pursuit CV, and Extra Trees 
Regressor models could be used. They all showed an RMSEP equal or inferior to the experimental error 
of 1.6 ºC. However, the Ridge and Ridge CV Regressor models had a processing time inferior to or equal 
to 0.10 s, so they were recommended in this work.

Predicting the kinematic viscosity of biodiesel using MIR Spectroscopy data
Although all the predicted models showed a higher R2, the RMSEP values were higher than the 

experimental error (0.0267 mm2 s-1). Given the results obtained, it is necessary to understand better the 
behavior of kinematic viscosity to choose how to model using MIR Spectroscopy data. 
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Concerning the estimation of low-temperature liquid viscosity
Orrick and Erbar33 and Sastri-Rao34 are estimation methods for liquid viscosity at low temperatures based 

on logarithm, which employ structural-sensitive parameters valid only for specific homologous series or are 
from group contributions. Both methods are widely used and are limited to reduced temperatures, but none 
of these methods considered are particularly reliable. Neither is reliable for highly branched structures. In 
using viscosity in engineering calculations, one is often interested not in the dynamic viscosity but in the 
ratio of the dynamic viscosity to the density. This quantity, called kinematic viscosity, would generally be 
expressed in m2 s-1 or stokes. Pure liquid viscosities at high reduced temperatures are usually correlated 
with variations of the law of corresponding states. At low temperatures, most methods are empirical and 
involve a group contribution approach. Current liquid mixtures correlations essentially mix rules relating 
pure component viscosities to composition. The log transformation was applied to the kinematic viscosity 
values based on these studies. Therefore, it was challenging to model a viscosity of a mixture of fluids 
using infrared spectral data, particularly with the biodiesel blend samples.

Table IV summarizes the results obtained for the predicted models using R2 and RMSEP as the figures 
of merit for the kinematic viscosity of biodiesel samples. In this table, it was only reported predict models 
with R2 ≥ 0.84. 

Table IV. Figures of merit from predicting models of kinematic viscosity at 40 ºC of biodiesel samples using MIR 
Spectroscopy data after log transformation

Model R2 RMSEP, mm2 s-1 Time Taken, s

Extra Trees Regressor 0.94 0.01 11.60

Bayesian Ridge 0.93 0.02 0.28

Ridge 0.92 0.02 0.08

Ridge CV 0.92 0.02 0.09

Nu SVR 0.92 0.02 0.20

Linear Regression 0.92 0.02 1.65

Extra Tree Regressor 0.92 0.02 0.20

Huber Regression 0.91 0.02 1.02

Lasso CV 0.90 0.02 83.50

Orthogonal Matching Pursuit 0.89 0.02 0.45

Lasso Lars CV 0.89 0.02 8.66

Linear Regression 0.89 0.02 0.15

Transformed Target Regressor 0.89 0.02 0.15

Tweedie Regressor 0.88 0.02 0.12

K Neighbors Regressor 0.88 0.02 0.10

Gamma Regressor 0.87 0.02 0.24

LGBM Regressor 0.87 0.02 1.59

Poisson Regressor 0.86 0.02 0.13

Hist Gradient Boosting Regressor 0.86 0.02 14.84
(continues on the next page)
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Model R2 RMSEP, mm2 s-1 Time Taken, s

Bagging Regression 0.86 0.02 2.00

Gradient Boosting Regressor 0.84 0.02 13.72

Twenty-one of the predicted models showed a higher R2, and the RMSEP values were lower or equal 
to the experimental error (0.0267 mm2 s-1). However, the Ridge and Ridge CV Regressor models had a 
processing time inferior to or similar to 0.09 s, which was recommended in this work.

CONCLUSIONS
Using the MIR Spectroscopy dataset, the physical properties of biodiesel and its blends, such as CFPP 

and kinematic viscosity at 40 ºC, could be modeled by auto-machine learning algorithms.
The CFPP and kinematic viscosity at 40 ºC of the biodiesel samples and their blends could be modeled 

using MIR Spectroscopy datasets by different auto-machine learning algorithms with an RMSEP similar 
to the experimental error obtained with a classical procedure in a short time. There is a great advantage 
because it can predict this property quickly compared to the traditional methodology.

The auto-machine learning algorithms for these modeling were selected based on the figures of merit 
expressed by the RMSEP (lower value) and R2 (high value) and by computational time (lower value). This 
work recommends using the Ridge and Ridge Cross-Validation Regression methods for modeling these 
properties using the MIR Spectroscopy dataset.

Ridge regression shrinks the coefficients, and it helps to reduce the model complexity and multicollinearity. 
It was highlighted that the linear regression model with a penalization parameter (L2) could model these 
properties. However, the kinematic viscosity must be transformed using the log transformation before 
modeling to get good results. Therefore, it is essential to mention that the Ridge regression is adequate in 
scenarios where independent variables are highly correlated and occurred with MIR Spectroscopy data.
On the other hand, it should be noted that this is the first work in the literature to use automatic machine 
learning algorithms to predict physical properties in biofuels and their blends using MIR Spectroscopy data.

Conflicts of interest
Regarding conflicts of interest and on behalf of all authors, I declare there are no financial conflicts of 

interest or lack thereof.

Acknowledgements
The authors are thankful to “Conselho Nacional de Desenvolvimento Científico e Tecnológico” (CNPq), 

“Fundação de Amparo à Pesquisa no Rio de Janeiro” (FAPERJ), “Coordenação de Aperfeiçoamento de 
Pessoal de Nível Superior” (CAPES), and “Universidade do Estado do Rio de Janeiro” (Programa Pró-
Ciência) for their financial support. ASL has research scholarships from UERJ (Programa Pró-Ciência), 
FAPERJ (Programa Ciência do Nosso Estado), and CNPq (Bolsista de Produtividade 1D), respectively.

REFERENCES 
(1)	 Cunha, C. L. Application of multivariate calibration methods to predict properties of fossil fuels and 

biofuels using mid-range infrared spectrum and near-infrared spectroscopy and Raman spectroscopy 
data. Ph.D. Thesis, Rio de Janeiro State University, Rio de Janeiro, Brazil, 2019.

(2)	 Bobadilla, M. C.; Martinez, R. F.; Lorza, R.; L.; Gómez, F. S.; González, E. P. V. Optimizing Biodiesel 
Production from Waste Cooking Oil Using Genetic Algorithm-Based Support Vector Machines. 
Energies 2018, 11, 2995. https://doi.org/10.3390/en11112995

Luna, A. S.; Torres, A. R.; Cunha, C. L.; Lima, I. C. A.; Nonato, L. G. 

Table IV. Figures of merit from predicting models of kinematic viscosity at 40 ºC of biodiesel samples using MIR 
Spectroscopy data after log transformation (continuation)

https://doi.org/10.3390/en11112995


63

(3)	 Luque, R.; Lovett, J. C.; Datta, B.; Clancy, J.; Campelo, J. M.; Romero, A. A. Biodiesel as feasible 
petrol fuel replacement: a multidisciplinary overview. Energ. Environ. Sci. 2010, 3, 1706-1721. https://
doi.org/10.1039/C0EE00085J

(4)	 FRAGMAQ: Entenda a importância da utilização do biodiesel para o Brasil, suas vantagens e 
desvantagens. Available at: https://www.fragmaq.com.br/blog/entenda-importancia-da-utilizacao-
do-biodiesel-para-o-brasil-suas-vantagens-e-desvantagens/. [Accessed July 2021].

(5)	 Agência Nacional de Petróleo, Gás Natural e Biocombustíveis. Produção e fornecimento de 
biocombustíveis. Resolution ANP Number 45. 2014. Available at: https://www.gov.br/anp/pt-br/
assuntos/producao-e-fornecimento-de-biocombustiveis/biodiesel/especificacao-do-biodiesel. 
[Accessed Jan. 2022].

(6)	 Lôbo, I. P.; Ferreira, S. L. C.; Cruz, R. S. Biodiesel: parâmetros de qualidade e métodos analíticos. 
Quím. Nova 2009, 32 (6), 1596 – 1608. https://doi.org/10.1590/S0100-40422009000600044

(7)	 Associação Brasileira de Normas Técnicas (ABNT). NBR 10441:2014. Petroleum products – 
Transparent and opaque liquids – Determination of kinematic viscosity and calculation of dynamic 
viscosity. São Paulo, 2014. 

(8)	 Associação Brasileira de Normas Técnicas (ABNT). NBR 14747: 2015. Óleo diesel – Determinação 
da temperatura de entupimento de filtro a frio. São Paulo, 2015.

(9)	 Pimentel, M. F.; Ribeiro, G. M. G. S.; Cruz, R. S.; Stragevitch, L.; Pacheco-Filho, J. G. A.; Teixeira, 
L. S. G. Determination of biodiesel content when blended with mineral diesel fuel using infrared 
spectroscopy and multivariate calibration. Microchem. J. 2006, 82, 201-206. https://doi.org/10.1016/j.
microc.2006.01.019

(10)	 Baptista, P.; Felizardo, P.; Menezes, J. C.; Correia, M. J. N. Multivariate near-infrared spectroscopy 
models for predicting the iodine value, CFPP, kinematic viscosity at 400C, and density at 15 ºC of 
biodiesel. Talanta 2008, 77, 144 – 151. https://doi.org/10.1016/j.talanta.2008.06.001

(11)	 Lira, L. F. B.; Vasconcelos, F. V. C.; Pereira, C. F.; Paim, A. P. S.; Stragevitch, L.; Pimentel, M. 
F. Prediction of properties of diesel/ biodiesel blends by infrared spectroscopy and multivariate 
calibration. Fuel 2010, 89 (2), 405- 409. https://doi.org/10.1016/j.fuel.2009.05.028

(12)	 Balabin, R. M.; Safieva, R. Z. Near-Infrared (NIR) Spectroscopy for Biodiesel Analysis: Fractional 
Composition, Iodine Value, and Cold Filter Plugging Point from One Vibrational Spectrum. Energ. 
Fuels 2011, 25 (5), 2373 – 2382. https://doi.org/10.1021/ef200356h

(13)	 Filgueiras, P. R.; Sad, C. M. S.; Loureiro, A. R.; Santos, M. F. P.; Castro, E. V. R.; Dias, J. C. M.; 
Poppi, R. J. Determination of API gravity, kinematic viscosity, and water content in petroleum by ATR-
FTIR spectroscopy and multivariate calibration. Fuel 2014, 116, 123 – 130. https://doi.org/10.1016/j.
fuel.2013.07.122

(14)	 Cunha, C. L.; Torres, A. R.; Luna, A. S. Multivariate regression models obtained from near-infrared 
spectroscopy data for prediction of the physical properties of biodiesel and its blends. Fuel 2020, 
261, 116344. https://doi.org/10.1016/j.fuel.2019.116344

(15)	 Cunha, C. L.; Luna, A. S.; Oliveira, R. C. G.; Xavier, G. M.; Paredes, M. L. L.; Torres, A. R. Predicting 
the properties of biodiesel and its blends using mid-FT-IR spectroscopy and first-order multivariate 
calibration. Fuel 2017, 204, 185-194. https://doi.org/10.1016/j.fuel.2017.05.057

(16)	 Neto, H. A. Metodologia de aprendizado AutoML baseado em informações de complexidade de 
instâncias. Ph.D. Thesis, Minas Gerais Federal University, Brazil, 2017. Available at: http://hdl.
handle.net/1843/35575 [Accessed Jan. 2022].

(17)	 Balaji, A.; Allen, A. Benchmarking Automatic Machine Learning Frameworks. arXiv:1808.06492 
[cs.LG] https://doi.org/10.48550/arXiv.1808.06492

(18)	 Chen, B.; Wu, H.; Mo, W.; Chattopadhyay, I.; Lipson, H. Autostacker: A compositional evolutionary 
learning system. Proceedings of the 2018 Genetic and Evolutionary Computation Conference 
(GECCO 2018). Anais, Kyoto, Japan, 2018.

Braz. J. Anal. Chem., 2023, 10 (39), pp 52-69.

https://doi.org/10.1039/C0EE00085J
https://doi.org/10.1039/C0EE00085J
https://doi.org/10.1590/S0100-40422009000600044
https://doi.org/10.1016/j.microc.2006.01.019
https://doi.org/10.1016/j.microc.2006.01.019
https://doi.org/10.1016/j.talanta.2008.06.001
https://doi.org/10.1016/j.fuel.2009.05.028
https://doi.org/10.1021/ef200356h
https://doi.org/10.1016/j.fuel.2013.07.122
https://doi.org/10.1016/j.fuel.2013.07.122
https://doi.org/10.1016/j.fuel.2019.116344
https://doi.org/10.1016/j.fuel.2017.05.057
http://hdl.handle.net/1843/35575
http://hdl.handle.net/1843/35575
https://doi.org/10.48550/arXiv.1808.06492


64

(19)	 Data Lab. AutoKeras. Available at: https://autokeras.com/. [Accessed Jan. 2022].
(20)	 Feurer, M.; Klein, A.; Eggensperger, K.; Springerberg, J. T.; Blum, M; Hutter, F. Auto-sklearn: Efficient 

and robust automated machine learning. In: Hutter, F.; Kotthoff, L.; Vanschoren, J. (Eds.). Automated 
Machine Learning, pp 113–134, Springer, Germany, 2019. 

(21)	 Google AutoML. Available at: https://cloud.google.com/automl/docs. [Accessed Jan. 2022]. 
(22)	 H2O.AI. H2O. Available at: https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html. [Accessed 

Jan. 2022].
(23)	 Romblay, A. A. MLBox. Available at: https://mlbox.readthedocs.io/en/latest/. [Accessed Jan. 2022]. 
(24)	 Pandala, S. R. Lazy Predict Documentation, release 0.2.9. 2021. Available at: https://github.com/

shankarpandala/lazypredict/issues [Accessed Jan. 2022].
(25)	 Python Software Foundation. Python Language Reference, version 3.9.5. 2021. Available at: http://

www.python.org [Accessed Jan. 2022].
(26)	 R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical 

Computing, Vienna, Austria, 2020. Available at: https://www.R-project.org/ [Accessed Jan. 2022].
(27)	 RStudio Team. RStudio: Integrated Development for R. RStudio, PBC, Boston, MA. 2020. Available 

at http://www.rstudio.com/ [Accessed Jan. 2022].
(28)	 Silverstein, R. M.; Webster, F. X. Spectrometric Identification of Organic Compounds. 6th ed., John 

Wiley & Sons, Inc., New York, USA, 2005. 
(29)	 Lilan, K. H.; Almoy, T.; Mevik, B-H. Optimal Choice of Baseline Correction for Multivariate Calibration 

of Spectra. Appl. Spectrosc. 2010, 64 (9), 1007-1016. https://doi.org/10.1366/000370210792434350
(30)	 Savitzky, A.; Golay, M. J. E. Smoothing and Differentiation of Data by Simplified Least Squares 

Procedures. Anal. Chem. 1964, 36 (8), 1627–1639. https://doi.org/10.1021/ac60214a047
(31)	 Rodionova, O. Y.; Kucheryavskiy, S.; Pomerantsev, A. L. Efficient tools for principal component 

analysis of complex data – a tutorial. Chemometr. Intell. Lab. 2013, 213, 104304. https://doi.
org/10.1016/j.chemolab.2021.104304

(32)	 Kuhn, M. Caret: Classification and Regression Training. R package version 6.0-88. 2021. Available 
at: https://CRAN.R-project.org/package=caret [Accessed Jan. 2022].

(33)	 Orrick, C.; Erbar, J. H. Private Communication to Reid. 1974. In: Poling, B. E.; Praunitz, J. M.; O’Connell, 
J. P. The Properties of Gases and Liquids. 5th ed., McGraw-Hill, Inc., New York, USA, 2001. 

(34)	 Sastri, S. R. S.; Rao, K. K. A new group contribution method for predicting viscosity of organic liquids. 
Chem. Eng. J. Biochem. Eng. 1992, 50 (1), 9 – 25. http://ore.immt.res.in/handle/2018/359

SUPPLEMENTARY MATERIAL

Employing auto-machine learning algorithms for predicting the cold filter plugging point and kinematic 
viscosity at 40 ºC in biodiesel blends using vibrational spectroscopy data.

Table S1. Composition of binary biodiesel blends

Biodiesel 1 % v/v Biodiesel 2 % v/v

Soybean 10 Corn 90

Soybean 30 Corn 70

Soybean 50 Corn 50

Soybean 70 Corn 30

Soybean 90 Corn 10

Soybean 10 Sunflower 90
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Biodiesel 1 % v/v Biodiesel 2 % v/v

Soybean 30 Sunflower 70

Soybean 50 Sunflower 50

Soybean 70 Sunflower 30

Soybean 90 Sunflower 10

Soybean 10 Canola 90

Soybean 30 Canola 70

Soybean 50 Canola 50

Soybean 70 Canola 30

Soybean 90 Canola 10

Canola 10 South region 90

Canola 30 South region 70

Canola 50 South region 50

Canola 70 South region 30

Canola 90 South region 10

Table S2. Composition of ternary biodiesel blends

Biodiesel 1 % v/v Biodiesel 2 % v/v Biodiesel 3 % v/v

Soybean 50 Corn 40 Canola 10

Soybean 40 Corn 30 Canola 30

Soybean 50 Corn 10 Canola 40

Soybean 50 Corn 40 Sunflower 10

Soybean 40 Corn 30 Sunflower 30

Soybean 50 Corn 10 Sunflower 40

Soybean 50 Canola 40 Sunflower 10

Soybean 40 Canola 30 Sunflower 30

Soybean 50 Canola 10 Sunflower 40

Table S1. Composition of binary biodiesel blends (continuation)
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Table S3. Composition of quaternary biodiesel blends

Biodiesel 1 % v/v Biodiesel 2 % v/v Biodiesel 3 % v/v Biodiesel 4 % v/v

Soybean 25 Corn 25 Canola 25 Sunflower 25

Soybean 40 Corn 40 Canola 10 Sunflower 10

Soybean 40 Corn 10 Canola 40 Sunflower 10

Soybean 40 Corn 10 Canola 10 Sunflower 40

Soybean 10 Corn 40 Canola 40 Sunflower 10

Soybean 10 Corn 40 Canola 10 Sunflower 40

Soybean 10 Corn 10 Canola 40 Sunflower 40

Table S4. Composition of ternary diesel-biodiesel-anhydrous ethanol blends

Diesel S-10, % v/v Soybean Biodiesel, % v/v Anhydrous Ethanol

88.0 10.0 2.0

85.0 10.0 5.0

83.0 10.0 7.0

80.0 10.0 10.0

83.0 15.0 2.0

80.0 15.0 5.0

78.0 15.0 7.0

75.0 15.0 10.0

78.0 20.0 2.0

75.0 20.0 5.0

73.0 20.0 7.0

70.0 20.0 10.0

73.0 25.0 2.0

70.0 25.0 5.0

68.0 25.0 7.0

65.0 25.0 10.0

Luna, A. S.; Torres, A. R.; Cunha, C. L.; Lima, I. C. A.; Nonato, L. G. 
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Table S5. Composition of binary diesel-biodiesel mixtures

Diesel, % v/v Biodiesel, % v/v

S-10 S-500 Standard Soybean Canola Sunflower Corn South 
region RJ

90.0 10.0

85.0 15.0

80.0 20.0

75.0 25.0

90.0 10.0

85.0 15.0

80.0 20.0

75.0 25.0

90.0 10.0

85.0 15.0

80.0 20.0

75.0 25.0

90.0 10.0

85.0 15.0

80.0 20.0

75.0 25.0

90.0 10.0

85.0 15.0

80.0 20.0

75.0 25.0

90.0 10.0

85.0 15.0

90.0 10.0

85.0 15.0

90.0 10.0

85.0 15.0

90.0 10.0

85.0 15.0

90.0 10.0

85.0 15.0

(continues on the next page)
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Diesel, % v/v Biodiesel, % v/v

S-10 S-500 Standard Soybean Canola Sunflower Corn South 
region RJ

90.0 10.0

85.0 15.0

80.0 20.0

70.0 30.0

PYTHON CODE

# Directory pkgdir = ‘D:/CURSO MBA CIÊNCIA DOS DADOS/Disciplina Metodologia e Projeto para 
Ciências de Dados/TCC/’ 

#!pip install lazypredict 
pip install lazypredict 
from lazypredict.Supervised import LazyRegressor 
import numpy as np
import pandas as pd

# CFPP model using MIR dataset 
train1_mir_cfpp = pd.read_csv(pkgdir+’train1_mir_cfpp.csv’, sep=’;’, decimal=’,’) 
y_cfpp_train1 = pd.read_csv(pkgdir+’y_cfpp_train1.csv’, sep=’;’, decimal=’,’) 
test1_mir_cfpp = pd.read_csv(pkgdir+’test1_mir_cfpp.csv’, sep=’;’, decimal=’,’) 
y_cfpp_test1 = pd.read_csv(pkgdir+’y_cfpp_test1.csv’, sep=’;’, decimal=’,’) 
train1_mir_cfpp.shape, y_cfpp_train1.shape 
test1_mir_cfpp.shape, y_cfpp_test1.shape 
train1_mir_cfpp = train1_mir_cfpp.to_numpy() 
y_cfpp_train1 = y_cfpp_train1.to_numpy() 
test1_mir_cfpp = test1_mir_cfpp.to_numpy() 
y_cfpp_test1 = y_cfpp_test1.to_numpy()

# Fit all models 
reg = LazyRegressor(predictions=True) 
model_mir_cfpp, predictions = reg.fit(train1_mir_cfpp, test1_mir_cfpp, y_cfpp_train1.reshape((-1,)), y_
cfpp_test1.reshape((-1,)))
print(model_mir_cfpp)

# Kinematic viscosity using MIR dataset 
train2_mir_visc = pd.read_csv(pkgdir+’train2_mir_visc.csv’, sep=’;’, decimal=’,’) 
y_visc_train2 = pd.read_csv(pkgdir+’y_visc_train2.csv’, sep=’;’, decimal=’,’)
test2_mir_visc = pd.read_csv(pkgdir+’test2_mir_visc.csv’, sep=’;’, decimal=’,’) 
y_visc_test2 = pd.read_csv(pkgdir+’y_visc_test2.csv’, sep=’;’, decimal=’,’) 
train2_mir_visc.shape, y_visc_train2.shape 
test2_mir_visc.shape, y_visc_test2.shape 

Table S5. Composition of binary diesel-biodiesel mixtures (continuation)
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train2_mir_visc = train2_mir_visc.to_numpy() 
y_visc_train2 = y_visc_train2.to_numpy() 
test2_mir_visc = test2_mir_visc.to_numpy() 
y_visc_test2 = y_visc_test2.to_numpy()

# Fit all models 
reg = LazyRegressor(predictions=True) 
model_mir_visc, predictions = reg.fit(train2_mir_visc, test2_mir_visc, y_visc_train2.reshape((-1,)), y_visc_
test2.reshape((-1,))) 
print(model_mir_visc)

# Kinematic viscosity using MIR dataset after log transformation 
train2_mir_visc = pd.read_csv(pkgdir+’train2_mir_visc.csv’, 68 sep=’;’, decimal=’,’) log_y_visc_
train2 = pd.read_csv(pkgdir+’log_y_visc_train2.csv’, sep=’;’, decimal=’,’) test2_mir_visc = pd.read_
csv(pkgdir+’test2_mir_visc.csv’, sep=’;’, decimal=’,’) log_y_visc_test2 = pd.read_csv(pkgdir+’log_y_visc_
test2.csv’, sep=’;’, decimal=’,’)
train2_mir_visc.shape, log_y_visc_train2.shape 
test2_mir_visc.shape, log_y_visc_test2.shape 
train2_mir_visc = train2_mir_visc.to_numpy() 
log_y_visc_train2 = log_y_visc_train2.to_numpy() 
test2_mir_visc = test2_mir_visc.to_numpy() 
log_y_visc_test2 = log_y_visc_test2.to_numpy()

# Fit all models after log transformation 
reg = LazyRegressor(predictions=True) 
model_mir_log_visc, predictions = reg.fit(train2_mir_visc, test2_mir_visc, log_y_visc_train2.reshape((-1,)), 
log_y_visc_test2.reshape((-1,))) 
print(model_mir_log_visc)
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