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Evaluation of a Lignin Bio-alkyd Resin for the 
Selective Determination of Molybdenum in Biological, 
Pharmaceutical, Fertilizer and Water Samples
Elhossein A. Moawed* , Sara M. Ragab, Amira R. El-Shobaky , Maha A. El Hagrasy

Chemistry Department, Faculty of Science, Damietta University, P.O. Box: 34517, Damietta, Egypt

A lignin-based bio-alkyd resin (LA-
Resin) was synthesized by the 
polycondensation reaction of lignin 
with a mixture of palmitic acid and 
glycerol. The LA-Resin was 
characterized using many techniques, 
including scanning electron 
microscopy, Fourier transform 
infrared spectroscopy, X-ray 
diffraction and thermal analysis. LA-
Resin was proven to have graphitized 
structures with enhanced surface 
functional groups, showing a slightly 
basic character [pH of zero charge 
point (pHZCP) = 7.8]. It has a relatively 
better cation exchange capacity (0.70 
mmol g-1) in addition to the ability for 
physical adsorption. The performance 

of LA-Resin was assessed for the uptake of molybdenum (Mo), followed by spectrophotometric 
determination, applying both batch and column techniques. Elevated sorption percentages of Mo were 
observed in acidic medium H2SO4 (1.5 mol L-1) in the presence of ascorbic acid (0.050 mol L-1) and NH4SCN 
(0.10 mol L-1). The method was successfully applied to the separation and determination of Mo in mice 
liver, pharmaceuticals, water and fertilizer samples. Validation showed good recovery (96.6-99.6%), 
sensitivity (LOD, 0.9-4.0 μg L-1), repeatability (RSD% ≤1.5%) and linearity (R2 = 0.984), demonstrating a 
good quantitative performance of the method. Mo in all investigated samples regardless of different 
matrices were well-separated and detected, indicating that the method is sensitive enough to detect low 
concentrations of Mo even in small samples such as mice liver.
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INTRODUCTION 
Molybdenum (Mo) is an essential microelement for biological organisms due to its important role in 

maintaining several biological activities, enzymatic processes, and synthesis of proteins and nucleic 
acids.1 Also, it is used for the regulation of body processes e.g., controlling digestion, eliminating harmful 
substances, reducing the activity of toxic compounds in the blood and suppressing cancer-causing 
agents.2 Excess of Mo uptake results in severe gastroenteritis, decreased milk production, osteoporosis, 
and retarded growth. In addition, low Mo content affects adversely growth and may lead to neurological 
disorders and even early death. Mo also has a positive effect in the prevention of tooth decay.3

Mo was determined in various biological and pharmaceutical samples using different techniques.4-7 
The separation/spectrophotometric method is preferable, simple, inexpensive, and easy to handle.8,9 In 
view of the very low concentration of Mo in environmental samples, it requires suitable methods for its 
preconcentration prior to its estimation.10

Adsorption is widely applied for the preconcentration and separation of diverse compounds including 
heavy metals. Bio-based sorbents are receiving great interest since they are environmentally friendly 
materials and have low to non-negative impact to environment. They, either in their pristine form or modified, 
have been extensively applied for the separation of different species regardless of their net charge. 

Lignin is the most abundant natural aromatic biopolymer, it is produced as a waste product of the paper 
and pulp industry, and yet only a minute percentage is used for further refinement.11 It contains various 
functional groups, such as ether linkages, aromatic hydroxyl, methoxy and aldehyde groups, making it 
appropriate for several modifications.12 Functionalization of lignin would alter the chemical properties of the 
resulting material, which would offer enhanced sorption efficiency towards broader spectrum of pollutants. 
In addition, crosslinking of lignin can produce a more stable structure; hence, lignin would be a potential 
candidate for the preparation of different sorbents with distinctive characteristics.13 The utilization of lignin 
not only provides potential sorbents, but also minimizes its impact, as a waste material, to the environment. 
Noteworthy drawbacks of lignin, however, are its brittle nature, along with its highly complex 3D structure, 
very low reactivity and its poor mechanical property. It is also a challenging task to recover lignin in a 
pure and clean form.14 All of these would promote substantial challenges to its application. To overcome 
such drawbacks, lignin would be either incorporated into polymers, with relatively better properties, or 
chemically modified to produce materials with novel properties. Many studies have been performed to 
develop various lignin-based materials for different applications. Its composites were investigated for the 
removal cations and anions.15 Also, it was produced in the form of microspheres and functionalized with 
amino groups for the removal of heavy metals.16 In addition, the combination of lignin and surface-active 
layer was reported to be an effective approach for dye removal and heavy metal remediation as that found 
after the addition of reduced graphene oxide to lignin-poly(N-methylaniline).17

Alkyd resins (ARs) are eco-friendly highly branched polymers with a polyester backbone mainly developed 
for coating purposes18 and recently were applied for the removal of contaminants.19 They are prepared with 
abundant and bio-based resources by the polycondensation (esterification) of three types of monomers, 
which are polyhydric alcohols, polybasic acids and fatty acids.20 ARs are inexpensive, thermally stable, 
soluble in organic solvents, have the ability to disperse pigments and fillers and have good adherence to 
different surfaces.21 Having a molecular structure consists of hydroxyl groups, unsaturated double bonds, 
ester groups and carboxyl groups, enables its modification by the reaction with various materials, resulting 
in novel materials with enhanced properties.22

In this study, taking into consideration the necessity of green transition to address the global warming 
crisis, a simple, environmentally benign, and cost-effective sorbent was developed by the reaction of 
oxidized lignin, separated from orange tree wood, as a source of carboxylic groups, with a mixture of 
palmitic acid and glycerol to synthesis LA-Resin, via polycondensation reaction, for the purpose of selective 
separation of Mo. LA-Resin was characterized by scanning electron microscopy (SEM), Fourier transform 
infrared spectroscopy (FTIR), ultraviolet and visible spectroscopy (UV-Vis), X-ray diffraction analysis (XRD) 
and thermogravimetric analysis (TGA). LA-Resin was evaluated for the uptake of Mo from acidic solutions, 
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followed by spectrophotometric detection. In addition, adsorption isotherms, the corresponding kinetics, 
thermodynamic analysis, interference studies, column studies, stripping and reusability of the sorbent 
were also carried out. The developed quantitative method was validated in terms of addition and recovery, 
limits of detection and quantitation, linearity, repeatability, and selectivity. The method was applied for the 
preconcentration and separation of Mo from mice liver, pharmaceutical, water and fertilizer samples.

MATERIALS AND METHODS
Apparatus

The crystal structure of LA-Resin (XRD patterns) was investigated using an X-ray diffractometer (D8-
Brucker Model) equipped with Cu Kα radiation (λ = 1.54 Å). The surface morphology of LA-Resin was 
analyzed using scanning electron microscope (SEM, JEOL model JSM-6510LV, USA). FTIR studies 
were carried out using a JASCO-410 spectrometer (JASCO, Easton, MD). A UV–Vis spectrophotometer 
(JASCO, V-630 UV-Vis Spectrophotometer, Japan) was employed for absorbance measurements. 
Thermogravimetric analysis (TGA), differential thermal analysis (DTA) and differential scanning calorimetry 
(DSC) were carried out by DSC-TGA device model (SDTQ 600, USA) under N2 atmosphere with a heating 
rate of 10 °C/min (29-1000 °C).

Reagents and materials
All chemicals were of analytical grade reagents and used without further purification. Molybdenum (Mo) 

stock solution (1000 mg L-1) was prepared by dissolving (NH4)6Mo7O24.4H2O (Merck) in doubly distilled 
water (DDW). Experimental solutions for adsorption and analysis were freshly prepared by diluting Mo 
stock solution with DDW. Nitric acid (65%, m/v), Sulfuric acid (98%, m/v) and ammonium hydroxide (29%, 
m/v) (Fluka) were used. Ascorbic acid (AA), ammonium thiocyanate, palmitic acid and glycerol were 
purchased from Sigma Aldrich. 

Orange tree wood was obtained from local area in Damietta, Egypt. Wood samples were washed 
thoroughly with distilled water to remove dust and other impurities. These were cut into small pieces and 
dried in an oven at 105 °C, left to cool followed by grinding and sieving. For separating lignin, a 100 g 
sample of the powder was treated with a volume of 500 mL H2SO4 (1:1) for 24 h under stirring to remove 
the polysaccharide fraction. The acid-insoluble lignin residue was filtered, washed thoroughly with distilled 
water until a filtrate with a neutral pH value was obtained. For preparing oxidized lignin, solid lignin was 
treated with 100 mL of 0.1 mol L-1 KMnO4 in 0.1 mol L-1 H2SO4 for 3 h at room temperature then filtered, 
washed thoroughly with distilled water and dried at 105 ºC. A 15 g of the as prepared material was refluxed 
with a mixture of 85 g of palmitic acid, and 30 g of glycerol for 6 h. The final product (LA-Resin) was 
separated, washed with distilled water, methanol and dried at 25 ⁰C.

Recommended procedures
Batch method was performed by mixing 0.10 g of LA-Resin with 25 mL of Mo(VI) solution (0.083 mmol 

L-1) containing H2SO4 (0.1–2.0 mol L-1), ascorbic acid (0.01–0.1 mol L-1) and NH4SCN (0.05–0.2 mol L-1). 
The mixture solution was then shaken for 1 h at room temperature. After equilibrium, the solution samples 
were filtered and the concentration of the remaining and recovered Mo from the LA-Resin was determined 
spectrophotometrically as thiocyanate complex at λmax 457 nm (Figure 1S). Kinetic studies were conducted 
with a concentration of (0.083 mmol L-1) molybdenum solution, and Mo uptake was carried out at different 
time intervals (1 - 120 min). The uptake percentage (E%) and equilibrium adsorption capacity of Mo (qe, 
mg/g) were calculated according to Equations (1) and (2).

 E% = 100 ((C0 - Ce)/C0) (1)

 qe = V(C0 - Ce)/m) (2)

where, C0 and Ce (mmol L–1) are the initial and equilibrium Mo concentrations, respectively, 
V (L) is the solution volume, and m (g) is the dry mass of LA-Resin.
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Dynamic method was performed using a 1.5 cm diameter glass column (35 cm length). The glass 
column was carefully loaded with a water slurry of LA-Resin material (10 g) to a bed height of 15 cm. 
Voids in the column bed were completely eliminated. Feed solutions of Mo, containing H2SO4 (1.5 mol L-1), 
AA (0.050 mol L-1) and NH4SCN (0.10 mol L-1) were passed through the column at a predetermined rate. 
Eluent solution contained 0.050 mol L-1 NH4OH. The feed solution flow and elution rates were both set to 
1–5 mL min-1. Fractions of the solution (3 mL each) were collected then analyzed.

Pharmaceuticals used in this study are Ferrotron: Fe 15 mg; Cu 0.9 mg; Zn 11 mg and Mo 45 μg, Vitamix 
plus: Cu 2 mg; Fe 9 mg; Mn 5 mg and Mo 30 µg, Phara ferro 27 tablets: Cu 1 mg; Fe 30 mg; Zn: 2.5 mg; 
Mo: 15 µg (Nasr city, Egypt), and Octatron multivitamins capsules: Mo: 45 μg; Zn: 11 μg; Se: 55 μg; (Giza, 
Egypt). To prepare drug solutions. To prepare drug solutions, capsules or tablets, containing the desired 
Mo concentration, were dissolved in concentrated nitric acid and gently evaporated till dryness, then the 
solid residue was dissolved in DDW acidified with drops of nitric acid then quantitatively transferred into 25 
mL measuring flasks, containing H2SO4 (1.5 mol L-1), AA (0.050 mol L-1) and NH4SCN (0.10 mol L-1) then 
completed to the mark with DDW.

Mice liver samples, containing pre-determined concentration of Mo, were kindly provided by Zoology 
Department, Faculty of Science, Damietta University. A 0.225 g sample of liver tissue was digested in a 
minimal volume of aqua regia and heated to ensure complete digestion. The digested was then dissolved 
with DDW and treated the same way as drug samples. 

Water samples, collected from Damietta (Egypt), including River Nile, seawater, and industrial 
wastewater were filtered using a Millipore 0.45 μm pore-size membrane and kept in polyethylene bottles. 
The water sample was spiked with Mo(VI) solution (1 μg L-1) and then determined as a molybdenum 
thiocyanate complex. Fertilizer sample (micro zein fertilizer), containing Zn: 2.4%; Fe: 2.4%; Mn: 2.4%; 
Cu: 0.6%; B: 0.6%; Mo: 0.06%; and S: 3.2% W/V (Unikim Tekstil Boyalarive, Turkey) was treated the same 
way as those of the pharmaceuticals.

The reusability of LA-Resin was explored for batch and continuous modes by following consecutive 
adsorption/desorption cycles. After each cycle, Mo was completely desorbed using 0.050 mol L-1 NH4OH, 
followed by a through rinsing with distilled water until a neutral supernatant was acquired. Subsequently, 
after drying only for batch method, the same adsorbent mass was recycled under the aforementioned 
optimum adsorption experimental conditions.

RESULTS AND DISCUSSION
Characterization of LA-Resin

Of the advantages of LA-Resin, noticed during experimentation, is that it required very short time to dry 
and it was generally much easier to handle and to be separated. To assist the homogeneous dispersion of 
lignin into the alkyd resin matrix, lignin was oxidized to ensure the production of excess carboxylic groups 
to react with the alkyd formulation through a condensation reaction. SEM was used to compare between 
the surface morphology of lignin and that of LA-Resin. SEM micrographs, at magnifications of 3,000x and 
5,000× of lignin show a bulk structure with wrinkled surface (Figure 1A, 1B). Whereas those of LA-Resin 
(Figure 1C, 1D) are completely different, they present prominent changes in the texture they show it has 
a multi-layered microstructure and contain many cavities with different sizes. Figures 1C and D illustrate 
interconnected well-organized sheets, with no visible boundaries between the mixture components and 
lignin could be no longer recognized, suggesting that lignin was completely well dispersed and integrated 
into the alkyd23 formulation to produce LA-Resin. These observations demonstrate the successful 
preparation of LA-Resin

Braz. J. Anal. Chem. 2022, 9 (36), pp 98–115.
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Figure 1. SEM micrographs of lignin (A, B) and LA-Resin (C, D) at 
magnifications of 3,000 and 5,000×.

FTIR was used to identify the chemical structure and functional groups of lignin, A-Resin and LA-Resin. 
The FTIR spectrum of lignin (Figure 2) shows a broad absorption band at 3729-2981 cm−1 which can be 
assigned to the stretching of phenolic and aliphatic -OH groups. Bands at 2923 cm−1 and 2855 cm−1 are 
ascribed to the C–H stretching of methylene and methyl groups, respectively. The characteristic bands 
located at 1511 and 1461 cm−1 correspond to the aromatic skeleton in lignin. These bands are nearly 
similar of the organosolv lignin.24,25 The band at 1631 cm−1 is attributed to –C=O stretching of carboxyl 
groups conjugated with the aromatic ring. While the FTIR spectrum of A-Resin (Figure 2S), a broadband 
appeared from 3721 to 3103 cm–1 was assigned to OH group. Several sharp peaks were also observed at 
2919, 2848 cm-1 (υCH), 1772-1565 cm-1 (υCO) and (υC=C) which characterize the matrix of A-Resin. All 
these band frequencies were shifted in the LA-resin spectrum (Figure 2) to 2797–3622, 2918, 2849, and 
1556 cm−1. In addition, two new sharp peaks developed at 1738 and 1268 cm-1, which correspond to the 
–C=O and –COO stretching and the band at 1631 cm−1 was absent. It can be observed that most of the 
peaks of LA-resin are identical to those of alkyd resin. All these characteristic absorption bands support 
the formation of AR in the presence of lignin to obtain the LA-Resin.

Figure 2. FTIR Spectra of lignin and LA-Resin.
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Also, electronic spectra of solid-state lignin, A-Resin and LA-Resin, recorded in the range of ~ 200–400 
nm (Figure 3S), reveal that lignin absorbs UV radiation very strongly below 215 nm and A-Resin at 373 
nm. Whereas LA-Resin does not absorb below 290 nm and it has two distinctive sharp peaks at ~ 300 and 
340 nm.

Of great importance to carbonaceous materials is the acid-base behavior of the surface functional 
groups and the value of pHzcp, at which the net surface charge is zero. The surface acidic and basic 
functional groups of lignin and LA-Resin obtained from Boehm titration are reported in Table I. The results 
show that the total acidic and basic groups of LA-Resin are 1.48 and 1.62 mmol g-1, respectively, which 
are greater than those of lignin (1.25 and 0.20 mmol g-1, respectively). The decrease of the amount of 
carboxylic group from 0.63 to 25 mmol g-1 is due to it reacting with a glycerol molecule. The ratio of reacted 
lignin and incorporated lignin is the following 0.38: 0.25 (1.5:1). As evident, the value of basic functionalities 
of LA-Resin are relatively greater than that of the acidic one, rendering the surface slightly basic which was 
further indicated pHzcp measurements. 

Figure 4S shows pHzcp curves of lignin and LA-Resin. The estimated values are 3.0 and 7.8 for lignin 
and LA-Resin, respectively. These results are in accordance with the determined acidic and basic sites 
and supports the better performance of LA-Resin to remove different species regardless of their charge 
under any pH value. It is evident that the surface chemistry of LA-Resin is greatly altered compared to that 
of lignin in terms of enhanced acidic and basic functional groups.

Table I. Acidic and basic sites of sorbents

Sorbent Basic Sites, mmol g-1
Acidic Sites, mmol g-1

Phenolic Carboxylic Lactonic
Lignin 0.20 0.15 0.63 0.47

LA-Resin 1.62 0.53 0.25 0.70

To investigate further the properties of the surface of LA-Resin, Iodine number (I2 No) and methylene 
blue value (MB value) were determined. I2 No would indicate the adsorption process of the sorbent while 
MB value implies the cation exchange ability. The I2 No and MB value of lignin and LA-Resin are 1.6, 
1.5, 0.6, and 0.7 mmol g-1, respectively (Table II). In addition, electrical conductivity measurements were 
performed (σ). The values of σ of lignin and LA-Resin are 7×10-12 and 2×10-11 Ω-1 m-1, respectively (Table 
II). This result signifies the very low electrical conductivities of both materials.

Table II. Iodine number and methylene value of sorbents

Sorbent Iodine number 
 mmol g-1

Methylene blue 
value mmol g-1

Electrical 
conductivity Ω-1 m-1

Lignin 1.6 0.6 7×10-12 
LA-Resin 1.5 0.7 2×10-11 

Thermal properties of lignin and LA-Resin were evaluated using TGA, and DSC analysis (Figure 5S). 
These curves indicate two steps of thermal decomposition for both materials. The weight loss at initial stage 
until ~100 °C, due to loss of adsorbed water, for lignin and LA-Resin are 21.2, and 5.9%, respectively. At 
the second step, a weight loss of 39.0, and 74.1% is observed at 104-1000 °C, and 111-1000 °C for lignin 
and LA-Resin, respectively. The total weight loss of LA-Resin (80%) was higher than that of lignin (60.2%) 
which resulted from the decomposition of the alkyd polymer. While ≥ 90% of the weight loss for A-Resin 
was at 442 °C.26

A powder XRD study was performed to investigate the crystallographic nature of lignin (Figure 6S) and 
LA-Resin (Figure 3). The main characteristic feature noticed in both patterns is the presence of a broad 
diffraction peak at 2θ = 20–30° which, corresponds to the (002) plane of the graphitized structures.

Braz. J. Anal. Chem. 2022, 9 (36), pp 98–115.
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Figure 3. XRD pattern of LA-Resin.

Sorption of molybdenum ions
The sorption percentages of Mo from thiocyanate solution were investigated in an acidic medium (0.1–

2.0 mol L-1 H2SO4), ascorbic acid (0.01–0.1 mol L-1), ammonium thiocyanate (0.05–0.2 mol L-1) and different 
weight of LA-Resin (0.05–0.2 g) (Figure 4). It was found that the optimum conditions for the sorption of Mo 
are 1.5 mol L-1 H2SO4, 0.06 mol L-1 ascorbic acid, 0.1 mol L-1 NH4SCN and 0.1 g of LA-Resin.

Figure 4. Conditions of the extraction of molybdenum from aqueous solution.

Mo adsorption onto LA-Resin occurred very rapidly within the first 5 min at which almost 75% of Mo 
was adsorbed. The adsorption rate decreased significantly after 30 min, which could be attributed to the 
decrease of adsorption reactive sites, available for Mo adsorption, then equilibrium was attained after 
60 min. Consequently, 60 min was chosen as the optimum contact time. Pseudo-first-order (PFO) and 
pseudo-second-order (PSO) models were used to evaluate the adsorption kinetics. The results (Table 1S, 
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2S) suggest that Mo adsorption is better described by the PSO (R2 = 0.997, Figure 7S), with a qe value 
almost equal to that of the experimental, kinetic model rather than PFO (R2 = 0.750, Figure 7S). This 
result would indicate that Mo adsorption onto LA-Resin follows a chemisorption mechanism by sharing or 
replacing electrons between LA-Resin and Mo.

The adsorption capacity of LA-Resin was investigated by adsorption isotherms. As shown in Figure 8S, 
the uptake of Mo onto LA-Resin increases with the increase of concentration until a plateau is reached 
(qmax = 31.7 mg g-1). The experimental data were then fitted by the Langmuir and Freundlich models to 
determine whether the adsorption process was a monolayer or a multilayer adsorption. The obtained 
results (Table S1) indicate that compared to Freundlich model (R2 = 0.860, Figure 8S), Langmuir model 
(R2 = 0.920, Figure 8S) is a good fit to the experimental data, suggesting a mono-molecular layer sorption, 
with a maximum monolayer sorption capacity of 39.20 mg g-1, of Mo as well as a homogeneous distribution 
of active sites on the LA-Resin surface. Table 4S illustrates the adsorption capacities of some sorbents, 
revealing the good sorption capacity of LA-Resin.

The effect of temperature (25–60 °C) on the sorption of Mo ions using LA-Resin was studied. It was 
found that the sorption of Mo ions very slightly increased with increasing temperature. The calculated 
thermodynamic parameters are Gibbs’s free energy (ΔG), enthalpy (ΔH), and entropy (ΔS) (Figure 9S, 
Table 5S, 6S). ΔH is 21.6 kJ mol-1, the positive value reveals that the extraction of Mo ions by LA-Resin is 
endothermic. ΔG is -19.20 kJ mol-1, indicating a spontaneous sorption process and ΔS is 137 J K-1 mol-1.

Mechanism of Mo adsorption onto LA-Resin
LA-Resin has a relatively weak basic character, where the activity of total acidic and basic groups is 

1.48 and 1.62 mmol g-1, respectively, which was further indicated by a pHZCP value of 7.8. It has a good 
ability to accommodate Mo through different mechanisms since it has a cation exchange capacity of 0.70 
mmol g-1 in addition to the ability for physical adsorption (I2 No = 1.5 mmol g-1) as also indicated from 
SEM images. Under the optimum conditions, Mo ions would be present as [Mo(SCN)6]– and the surface 
of LA-Resin would be positively charged due to the protonation of the basic functional groups (solution 
pH < pHZCP). Accordingly, adsorption would firstly start as a result of the electrostatic attraction between 
the protonated LA-Resin surface and the negatively charged Mo thiocyanate complex and this would be 
the initial driving force to bind Mo to the sorbent surface. Afterwards, inner sphere complexation might 
have happened, as indicated by kinetic studies, which is the most important mechanism for Mo adsorption 
where it could be adsorbed into LA-Resin surfaces through coordination with functional groups (Figure 5).

Figure 5. A mechanism scheme for the sorption of Mo onto LA-Resin.

Effect of foreign ions
The effect of the presence of different ions on the adsorption of molybdenum (200 μg) onto LA-Resin, 

using batch mode, was examined (Figure 10S). Ions such as Na+, K+, Mn2+, Ni2+, Pb2+, Co2+, Zn2+ and 
Ca2+ (1000 μg) had almost no interference (< 2%). However, Sb3+ and Fe3+ (1000 μg) caused noticeable 
interference (16-17%). The addition of either 1mL of 0.1 M citric acid or excess ascorbic acid solution 
eliminated such interference.

Braz. J. Anal. Chem. 2022, 9 (36), pp 98–115.
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Column studies
The extraction and recovery of Mo ions were tested using a LA-Resin-loaded column (35 cm long and 

1.5 cm in diameter contained 10 g of LA-Resin with bed height 15 cm). It was found that Mo ions were 
completely adsorbed under the optimized conditions and were eluted with 10-15 mL of 0.05 mol L-1 NH4OH 
solutions at 1-5 mL min-1 (Figure 6). To investigate the effect of sample loading and eluent flow rates on 
Mo retention and recovery, either feed solutions of Mo, under the optimized experimental conditions, or 
eluent solutions (0.050 mol L-1 NH4OH) were passed through the column at different flow rates varying 
from 1–5 mL min-1. The flow rate of sample loading in the investigated range did not show any difference 
(data not shown) so, a flow rate of 1 mL min-1 was chosen for further experiments. According to the 
results shown in Figure 6, Mo species were eluted completely under the investigated range however, a 
better-resolved peak was obtained at eluent flow rate of 1 mL min-1, accordingly, it was further applied for 
eluting Mo species. Preconcentration of Mo from water samples was investigated. Solutions of 100 μg of 
Mo ions in up to 500 mL of water samples were passed through the LA-Resin column (1 mL min-1). The 
elution of Mo ions from the LA-Resin column was carried out by 10 mL NH4OH (0.05 mol L-1) solution then 
the eluates were determined.27 The results show that the recovery percentages are about 100% with a 
preconcentration factor of up 50. 

Capacity of the LA-Resin column was calculated by percolating it with Mo solution (0.10 mg mL-1) at a 
flow rate of 1 mL min-1. Breakthrough curves were obtained by measuring the content of Mo ions in 5 mL 
collected fractions from the effluent (Figure 11S). The breakthrough point is reached at a volume of 100-
480 mL, the breakthrough capacity was 36.5 mg L-1.

Figure 6. Effect of eluent flow rate on the recovery of molybdenum from LA-Resin column.

Regeneration of LA-Resin
The regeneration experiments were carried out to evaluate the reusability of AL-Resin. Based on the 

point that the adsorption of Mo onto LA-Resin took place in acidic medium, Mo desorption was tested in 
basic solution. The LA-resin material was affected at pH ≥ 12 using NaOH solution (Figure 12S) and not 
effect with ammonia solution. Therefore, the best eluent examined was NH4OH with a concentration of 
0.05 mol L-1 at 25 ºC for 12 h. After five cycles of regeneration, in batch mode, the adsorption capacity 
was unchanged as well as the removal efficiency. For column experiments, one column was conducted 
through the whole experiment for more than 10 cycles of sorption/desorption and it kept its performance 
unchanged. These results suggest that LA-Resin is not only a selective material for Mo at the investigated 
operating conditions but also could be an efficient adsorbent for the removal of Mo from different matrices.

Evaluation of a Lignin Bio-alkyd Resin for the Selective Determination of Molybdenum in Biological, 
Pharmaceutical, Fertilizer and Water Samples
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Analytical performance of the proposed method
A calibration curve for Mo was obtained, applying the optimized preconcentration method. The linear 

range was obtained for a concentration range near the limit of quantification (LOQ) up to 15 mg L-1, with 
R2 value of 0.984. The analytical sensitivity was assessed by the limits of detection (LOD) and limits of 
quantitation (LOQ) for the extraction and recovery of Mo from the investigated biological and pharmaceutical 
samples using LA-Resin columns (Table III). The values of LOD and LOQ are in the range of 0.9-4.0 
and 2.9-13.4 μg L-1, respectively (n = 5) which indicate the higher sensitivity of Mo determination by LA-
Resin columns compared to other reported results. The accuracy and precision for the determination of 
Mo using LA-Resin in real samples were investigated by analyzing spiked samples. Table IV shows the 
results of extraction and recovery of Mo from mice liver and pharmaceutical samples. The high recoveries 
(96.6–99.6%) of Mo along with their lower values of RSD% (0.3-1.5%, n = 5) reflect the good accuracy and 
precision of the proposed method.

Table III. Detection limit of molybdenum

Samples LOD, µg L-1 LOQ, µg L-1

Liver mice tissue 2.5 8.4
Vitamix plus capsule 3.2 10.6
Octatron capsule 1.7 5.7
Ferrotron capsule 4.0 13.4
Phara ferro 27 tablet 0.9 2.9

Table IV. Determination of molybdenum in real samples

Samples Added, µg Found, µg Recovery, % RSD, %

Liver mice tissue 105 104.6 99.6 0.9
Vitamix plus capsule 90 88.8 98.7 1.2
Octatron capsule 90 89.5 99.5 0.5
Ferrotron capsule 90 86.9 96.6 1.5
Phara ferro 27 tablet 100 98.1 98.1 0.3

Preconcentration and recovery of Mo from real samples
Figure 7 shows chromatographic separation of Mo from other metals in Mo-containing pharmaceuticals, 

Ferrotron and Vitamix plus, on LA-Resin-packed columns. The elution of Mo was carried out at a flow rate of 
1.0 mL min-1 using NH4OH (0.05 mol L-1), then the concentrations were determined spectrophotometrically. 
Mo ions were completely eluted from LA-Resin columns with a recovery percentage of 100% at the first 
12 mL of NH4OH solution. The resolution factors (Rs) for the separation of Mo from Cu ions in Vitamix 
plus and Ferrotron samples, calculated by the following equation: Rs = 2(V2 – V1)/(W1+W2) are 1.1 and 
1.4, respectively. These results considerably suggest that LA-Resin columns have the potential, under the 
operational conditions, for the separation of Mo from different matrices with good resolution and could be 
completely recovered from real samples.
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Figure 7. Chromatographic separation of molybdenum from pharmaceutical samples.

For the determination of Mo–bound in biological samples, using the mice liver as a model, the digest of 
mice liver samples, containing pre-determined concentration of Mo, were treated the same way as drug 
samples. The results (Table IV) show that the recovery percentage of Mo is 99.6% (RSD = 0.90%, n = 5).

LA-Resin column was applied for the extraction of Mo from water samples, namely, River Nile, seawater 
and industrial wastewater. Mo-spiked water samples, treated under the optimized conditions, were allowed 
to pass through the LA-Resin columns at a flow rate of 1 mL/min. The elution of Mo from the LA-Resin 
column was carried out by NH4OH (0.05 mol L-1) solution and the amount of Mo in the eluates were 
determined by the recommended method. The results show that the average recovery percentages of Mo 
are 100% (RSD = 0.00%, n = 5). Therefore, LA-Resin column could be applied for the recovery of Mo from 
different water samples. In addition, Mo content in micro zein fertilizer was assessed by LA-Resin column. 
The results show that the recovery percentage of Mo (60 μg) is 100% (RSD = 0.76%, n=5).

CONCLUSION
LA-Resin was synthesized and characterized by many techniques. The sorbent has a relatively weak 

basic character, where the total acidic and basic groups are 1.5 and 1.6 mmol g-1, respectively. It has a 
good ability to accommodate sorbate species through different mechanisms since it has a cation exchange 
capacity of 0.7 mmol g-1 in addition to the ability for physical adsorption (I2 No = 1.5 mmol g-1). The sorbent 
showed, under the optimum conditions, that the uptake of [Mo(SCN)6]– complex onto the positively charged 
LA-Resin most probably took place through the formation of ion-associate complex. Kinetic studies 
revealed that the removal of Mo follows a chemisorption mechanism by sharing or replacing electrons 
between LA-Resin and Mo. LA-Resin has a homogeneous distribution of active sites to accommodate a 
mono-molecular layer of Mo (qmax = 31.7 mg g-1) as indicated by sorption isotherm studies. Mo ions were 
desorbed effectively using an aqueous solution of 0.05 mol L-1 NH4OH. A LA-Resin-column was tested for 
the uptake and elution of the Mo and the recovery was almost 100% suggesting a good efficiency of LA-
Resin to the chromatographic separation. The reusability experiment indicated that LA-Resin is not only a 
selective material for Mo at the investigated operating conditions but also is an efficient and cost-effective 
adsorbent for the removal of Mo from different matrices.
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SUPPLEMENTARY MATERIAL

   

 

Figure 1S. Calibration curve for determination of 
molybdenum ions.

 

Figure 2S. FTIR spectrum of the A-Resin.

   
Figure 3S. Electronic spectra for lignin, and LA-Resin.

 
Figure 4S. The pHzpc curves of lignin and LA-Resin.
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Figure 5S. TGA (A) and DTA (B) curves of lignin and LA-Resin.

Figure 6S. XRD pattern of lignin.

   
Figure 7S. Plots of non-linear kinetic models for the adsorption of Mo(VI) onto LA-Resin: Initial concentration 
of Mo(V) ions 5 to 200 mg L−1; amount of LA-Resin 0.1 g; sample volume 25 mL; acidity 1.5 M.
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Figure 8S. Plots of non-linear isotherm models for the adsorption of Mo(VI) onto LA-Resin: Initial concentration of 
Mo(V) ions 5 to 200 mg L−1; amount of LA-Resin 0.1 g; sample volume 25 mL; shaking time 60 min; acidity 1.5 M.

   

 

Figure 9S. Plots of thermodynamic model.

 

Figure 10S. Effect of the interfering ion on the 
extraction of Mo onto LA-Resin from aqueous solution.

   

 

Figure 11S. Breakthrough curve for extraction of 
Mo from aqueous solution using LA-Resin column.

 

Figure 12S. Effect of alkaline solution on the stability 
of LA-Resin.
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Table 1S. Kinetic and isotherm parameters for the sorption of Mo(V) onto LA-Resin 

Kinetics Pseudo-first-order model Pseudo-second-order model

Parameters qe1 (mg g−1) k1 (min−1) R2 qe2
(mg g−1)

k2
(g mg−1 min−1) R2

1.77 0.043 0.75 1.98 2.01×10-5 0.997

Isotherm Langmuir isotherm Freundlich isotherm

Parameters qmax (mg g− 1) b (L mg− 1) R2 KF n R2

39.2 0.026 0.92 0.356 2.01 0.86

*Co = 8 mg L−1, V = 25 mL, t = 0-120 min, qexp = 1.94 mg g−1

Table 2S. non-linear kinetic parameters for the adsorption of Mo(VI) onto LA-Resin: Initial concentration 
of Mo(V) ions 5 to 200 mg L−1; amount of LA-Resin 0.1 g; sample volume 25 mL; acidity 1.5 M

Kinetics Pseudo-first-order model Pseudo-second-order model

Parameters qe1 (mg/ g−1) k1 (min−1 ) R2 qe2
(mg g−1)

k2
(g mg−1 min−1) R2

1.77 0.043 0.75 1.98 2.01×10-5 0.997

Table 3S. Non-linear isotherm parameters for the adsorption of Mo(VI) onto LA-Resin: Initial concentration 
of Mo(V) ions 5 to 200 mg L−1; amount of LA-Resin 0.1 g; sample volume 25 mL; shaking time 60 min; 
acidity 1.5 M

Isotherm Langmuir isotherm Freundlich isotherm

Parameters qmax (mg g− 1) b (L mg− 1) R2 KF n R2

42.1 0.053 0.98 4.4 2.2 0.92

Table 4S. Comparison between LA-Resin adsorption capacities of various adsorbents

Adsorbent Sorption capacity (mg g−1) References

Ch-NMA 29.7 (1)

Mn3O4-TiO2 nanocomposite 20.6 (2)

WB1000 29.8 (3)

CrFe2O4 nanoparticles 17.03 (4)

SM-4 resin impregnated with CYANEX 923 8.2 (5)

TVEX- TOPO resin 17.6 (6)

TOA/perlite 7.2 (7)

Brown algae Laminaria japonica gel (CAG) 38.19 (8)

(continues on the next page)
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Adsorbent Sorption capacity (mg g−1) References

Silica gel/quercetin 8.54 (9)

Activated DWTRs 39.2 (10)

NaOCl-oxidized multiwalled carbon nanotubes 22.7 (11)

Di-(2-ethylhexyl) phosphoric acid 25.7 (12)

Carminic acid modified anion exchanger 13.5 (13)

Nano-magnetic CuFe2O4 30.6 (14)

Chitosan-modified magnetic nanoparticles 35.5 (15)

Table 5S. Thermodynamic parameters for the sorption Mo(V) onto LA-Resin

Thermodynamic parameters

∆G (kJ mol-1) ∆H (kJ mol-1) ∆S (J K-1 mol-1)

-19.2 21.6 137

Table 6S. The values of ΔG at different temperatures

ΔGln KKTemperature, K

-19.737493977.9664663512882.653298

-20.16426747.8744768642629.31308

-21.207529228.1495891773461.957313

-22.943242428.5436264485133.929323

-23.852626458.6155290925516.667333

Table 4S. Comparison between LA-Resin adsorption capacities of various adsorbents (continuation)
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