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Chemometrics, and multivariate data analysis in particular, has become a significant component of 
Analytical Chemistry as can be seen from the NGrams plot in Figure 1 for the word “chemometrics”. This 
is because of the need to have mathematical methods capable of extracting the pertinent information from 
the ever-increasing amounts of data generated by modern instruments. Usually, these multivariate data 
analysis methods are concerned with the exploratory analysis of a single data matrix, as in PCA, or with 
relating one explanatory matrix to another descriptive matrix, as in regression methods such as PCR and 
PLS, or discriminant methods, such as FDA and PLS-DA.

Figure 1. Evolution of the usage of the word “chemometrics” as given by NGrams (https://books.
google.com/ngrams).

Recently however, there has been a trend towards analyzing many matrices simultaneously, the data 
being in the form of blocks of variables describing the same individuals. This trend of multiblock analysis 
(Figure 2) is the result of two forces: the availability of a wide range of very different instrumental techniques, 
and a paradigm shift towards a holistic study of complex systems. This is the case, for example, for -omics 
data, where combining or fusing data from different instruments can result in a better characterization of 
the individuals under study than that which is possible using each source of information separately. 
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Figure 2. Evolution of the usage of the term “multiblock analysis” as given by NGrams (https://books.
google.com/ngrams).

Much work has been done recently on the development of multiblock data analysis methods in order 
to treat this sort of data. Multiblock methods were initially used in sensometrics for the analysis of sensory 
data. For example, when a set of samples are evaluated by a group of judges, each using several (possibly 
different) descriptors, it is interesting to know more than just the relations between the samples but also 
which judges consider the samples as similar and which evaluate them differently. In chemometrics, the 
aim is to highlight the relationships between various blocks of variables. Early discussions of multiblock 
methods can be found in Smilde, Westerhuis and de Jong [1], Westerhuis et al. [2], and Qin et al. [3]. A 
very recent overview of the many different multiblock methods and their applications can be found in the 
book “Data fusion methodology and applications” [4].

The ComDim multiblock data analysis method
The main characteristic of multiblock methods is that they extract global components corresponding to 

the directions of greatest dispersion of the individuals, common to the multidimensional spaces defined by 
each of the data blocks. Although, as can be seen in [4], there are many interesting methods available to 
do multiblock, multivariate data analysis, I will concentrate in the following on a particular algorithm simply 
because I know it well and I think it works very well.

“Common Components and Specific Weights” (CCSWA or ComDim) is an unsupervised, multi-
block (or multi-table) data analysis method developed by Qannari et al. [5-7], in the context of sensory 
profiling for the simultaneous analysis of several data tables describing the same individuals. It has since 
been widely applied in chemometrics, for example: simultaneous analysis of Mid Infrared (MIR) and 
Fluorescence spectra of cheeses [8], chemical and sensory characteristics of wines [9], the fatty acid 
composition of edible oils evaluated by combining Near Infrared (NIR) and Ultraviolet-Visible (UV-Vis) 
spectroscopy and Gas Chromatographic (GC-FID) data [10], interpretation of NIR and NMR spectral data, 
quality parameters and sensory properties of Brazilian coffees [11], monitoring surface water quality using 
physico-chemical, microbiological and 3D Fluorescence data [12], characterizing structural changes in 
a semisolid pharmaceutical formulation by NIR spectroscopy and Raman imaging [13], discrimination of 
commercial Yerba mates by combining HPLC, phytochemical composition, antioxidant activity, Visible 
and NIR spectroscopy, colorimetry and electronic nose data [14], coupling data from 3 laser-induced 
breakdown spectroscopy (LIBS) detectors to sort geological materials from caves [15], combining NMR and 
MIR spectra with stable isotope data to differentiate organically- and conventionally-produced tomatoes 
[16], combining 1H NMR and 13C NMR spectra with stable isotope data to differentiate organically- and 
conventionally-produced milk [17], combining NMR, MIR and Isotope Ratio MS data to discriminate tomato 
varieties [18].
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ComDim and two of its extensions have also been applied in metabolomics, for example in a large-
scale, multi-instrument inter-laboratory study [19], using ComDim and OPLSDA to combine positive- and 
negative-mode ElectroSpray Ionisation data from an UHPLC-TOF/MS system [20], using ComDim and 
OPLSDA to evaluate the therapeutic potential of a series of 83 flavonoid derivatives by relating five blocks 
of physicochemical properties to their affinity toward P-glycoprotein, and to differentiate a series of 60 
human cancer cell lines by combining transcriptomic, metabolomic and proteomic data [21]. 

The ComDim method consists in determining a common space for all the data tables, with each matrix 
having a specific contribution (“salience”) to the definition of each orthogonal direction of this common 
space. The components are iteratively extracted so as to correspond to the maximum amount of variance 
that is common to the largest number of tables. Each table is first normalized so that larger tables do not 
automatically have more influence in the calculation. 

An iterative process is used to estimate the contribution (“salience”) of each block to each CC. A 
significant difference in the saliences of the blocks for a given CC reflects their different contributions to 
the construction of that common dimension.

The coordinates of the observations on the ComDim directions are the ‘Global Scores’ and the 
contributions of the variables within each of the normalized tables are the ‘Scaled Loadings’. 

In the original algorithm, each CC is the first normed scores vector of a weighted sum of scalar 
matrices calculated from all the data tables as shown in Figure 3, in the simplest case of two centered 
and normalized data blocks, X1 and X2. A weighted sum WG of the samples-based variance–covariance 
matrices, Wi = Xi×Xi

T, is calculated using an initial weighting, or salience, of λi = 1 for all tables. The vector 
of scores of the first normed Principal Component is extracted from WG as an initial estimate of the first 
Common Component (CC). The salience, λi, of each block Wi is then recalculated from these scores. The 
estimations of the Global Scores and saliences are optimized by iterative recalculation until convergence. 
Each original matrix Xi is then deflated, and the procedure is repeated for the calculation of the second 
CC, and so on. 

Figure 3. Schema of the original ComDim algorithm in the case of two data blocks.
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Extensions of ComDim
As mentioned above, there have been a number of extensions and adaptations of the ComDim 

algorithm, such as replacing the PCA step by a PLS regression, or a discriminant analysis using PLSDA 
or OPLSDA [20,21]. 

Another entirely different predictive method, P-ComDim, has been developed by Qannari et al. [22] and 
even extended as a Path-Modelling method [23] which is useful if all the blocks are assumed to have a 
specific pattern of directed relations among them reflecting, for instance, a chain of influence.

In a way similar to the ANOVA–PCA method proposed by Harrington et al. [24], AComDim is an 
adaptation of ComDim to identify significant factors and interactions in an experimental design [25,26].

Software
A Graphical User Interface for multiblock data analysis (MB-GUI) [27] has been developed to make 

the implementation of multi-block data analysis easier, so that it can also be done by practitioners with no 
programming skills. The GUI can be downloaded from (https://github.com/puneetmishra2/Multi-block.git) 
and can be either installed to run in the MATLAB environment or as a standalone executable program. 

The program covers a range of tasks such as multi-block data pre-processing, visualization, exploration, 
predictive modelling, variable selection and multi-block analysis for data fusion. The article also includes a 
list of other free software resources available for multi-block data analysis.

CONCLUSION
The acquisition of multi-modal data in order to have a more complete understanding of the characteristics 

of complex systems is becoming widespread. This has necessitated the development of new algorithms to 
perform multiblock data analyses. The existence of these new tools is now having the interesting effect of 
producing a positive feedback, leading to even more multi-modal analyses. We are only at the beginning 
of this revolution.

To conclude, I would like to point out that much of the progress in this field is a result of the heritage of 
Ronei Jesus Poppi, through the inspiration that he has given to so many young chemometricians.
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