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An alternative methodology was developed to 
monitor the biokerosene content of palm kernel in 
blend with kerosene using medium infrared 
spectroscopy associated with partial least 
squares (PLS). The efficiency of this methodology 
was analyzed based on the parameters of 
accuracy and figures of merit. The values of root-
mean-square error of cross-validation (RMSECV), 
root-mean-square error of calibration (RMSEC) 
and root-mean-square error of prediction 
(RMSEP) were in agreement because the 
RMSEP was higher than RMSECV and RMSEC. 
In addition, the RMSEP value is considered 
acceptable according to the Brazilian standard 
ABNT NBR 15568 because it is less than 1%. 
The figures of merit were performed in agreement 

with the requirements established in the standard ASTM E1655-05. The linearity of the model was assessed 
based on the analysis of the model fit through the correlation of the actual and predicted values of the 
calibration and prediction sets, where a high correlation between the values was evidenced, with a correlation 
coefficient (R) exceeding 0.99. The good results of the application of MIR spectroscopy combined with 
multivariate regression by PLS suggest that this analytical methodology is feasible, efficient and suitable for 
use by inspection agencies to control the biokerosene content of palm kernel in mixture with diesel.
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INTRODUCTION
Aviation kerosene, commercially known as QAV, is a fuel derived from non-renewable energy sources 

used mainly in the airline sector. According to data provided by the International Air Transport Association 
- IATA, the use of this fuel by this sector generates approximately 2% of carbon dioxide emissions into the 
atmosphere, reaching a level of 3% by 2030 [1,2].

Several countries have sought to impose limits on current and future emissions to mitigate these 
polluting gases in the environment. These emissions represent a global concern in the 21st century and 
may increase with the expansion of the aviation industry. Thus, it is necessary to use environmentally 
sustainable fuel as an alternative to fossil fuel [3].

Aviation biokerosene (BioQAV) is a fuel derived from renewable sources with the potential to replace 
fossil kerosene. Some oilseeds such as jatropha (Jatropha curcas L.), camelina (Camelina sativa), babassu 
(Attalea speciosa), macaúba (Acrocomia aculeata) and palm kernel (Elaeisguineensis) stand out in the 
production of BioQAV because they have high levels of fatty oils in their composition whose carbon chain 
is similar to fossil kerosene [4].

The use of biokerosene in the aviation sector also produces carbon dioxide, but its production cycle 
reduces this environmental damage with the absorption of CO2 by plants in the process of photosynthesis. 
This process allows the biofuel to be carbon neutral during its life cycle. Another advantage of biofuel is 
that it is sulfur-free, which is one of the elements responsible for acid rain [5,6].

In Brazil, there is the National Biokerosene Program created in 2009 by law No. 3213/2009, which 
establishes the development of research on renewable fuels from biomass without changes in the 
technologies established in the turbine engines. That is, the composition of these fuels must guarantee the 
safety of the aviation system [7,8]. In this context, it is necessary to develop analytical methods that provide 
fast and reliable responses to assess the biokerosene content in the kerosene/biokerosene mixture.

For quantification purposes, several studies report the use of spectroscopic techniques associated with 
multivariate regression by partial least squares (PLS). Some of these works present the quantification 
of adulterants in biodiesel / diesel mixtures, as is the case of the authors De Souza et al. [9], proposes 
a new method for the quantitative analysis of soybean oil and sunflower oil as adulterants in oil of extra 
virgin flaxseed, using MIR spectroscopy associated with PLS. The models obtained were built according 
to the standard ASTM E1655-05, having obtained acceptable error values and good correlation between 
the measured and predicted values of the calibration and prediction sets. Máquina et al. [10], developed 
two methodologies to quantify and classify the cotton biodiesel content in mixtures with diesel, using 
MIR spectroscopy associated with PLS and Discriminant Analysis by Partial Minimum Squares (PLS-
DA) methods. The PLS model developed to determine the biodiesel content showed a good fit, with a 
correlation coefficient of the measured and predicted values exceeding 0.99.

However, there are no reports of published studies on the quantification of the biokerosene content of 
palm kernel in the kerosene/biokerosene mixture, using rapid and non-destructive analytical techniques 
associated with PLS regression methods. Thus, the present work aims to develop an analytical methodology 
that can be used by inspection bodies to quantify the biokerosene content of palm kernel in mixtures with 
kerosene, using MIR spectroscopy associated with the PLS chemometric method.

MATERIALS AND METHODS
Sample preparation

In this study, palm kernel biokerosene provided by LABIO (Biofuels Laboratory of the Chemistry Institute) 
of the Federal University of Uberlândia was used. Transpetro S/A (Brazil) supplied the pure kerosene 
used to prepare the kerosene/palm kernel biokerosene mixture, adding biokerosene to the kerosene in a 
concentration ranging from 1.00 to 70.00% (v/v). For the construction of the PLS model, 45 samples were 
used in the calibration set and 30 samples in the forecast set.
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Acquisition of spectral data
The MIR spectra were acquired using a PerkinElmer Spectrum Two spectrometer (PerkinElmer, 

Waltham, MA, USA) equipped with a HATR accessory and ZnSe crystal (Pike Techonologies). The spectra 
were recorded in the range of 4000–600 cm−1 with a 4 cm−1 resolution and were acquired using 16 scans 
for each of the quintuplicates.

Chemometrics analysis 
MATLAB software, version R2018b (Mathworks, Inc.) and PLS_Toolbox, version 8.9.1 (Eigenvector 

Research) were used to pre-process the data and develop the PLS model. To perform the multivariate 
procedures, the MIR spectra data were organized in an ordered array of rows and columns, constituting a 
matrix X, where each row corresponds one sample “m” and each column corresponds to one variable “n”, 
in the which m = 1,2,3, …, 75 and n = 1,2,3, …, 1306.

The spectral baseline was corrected in the bands of 4000–3100 and 2500–1850 cm−1 to minimize 
undesirable systematic variations in the data and then they were centered on the mean. Finally, a Y matrix 
was created containing concentration values (from 1.00 to 70.00% (v / v)) of the samples.

In the construction of the PLS model, matrix X is correlated with matrix Y through mathematical operations 
to obtain Latent Variables (LVs) and Regression Coefficients, used to achieve the maximum covariance 
between the spectra and concentrations of the species of interest and determine the concentration value 
of each spectral profile, respectively [9]. The purpose of this process is to find a small number of relevant 
factors  that are predictive of Y and that use X efficiently. To do this, matrix X is decomposed into a set of 
orthogonal factors that are used to adjust Y, according to Equation 1. Matrix Y is decomposed according 
to Equation 2: [10]

	  	 (1)

	  	 (2)

where, X and Y are matrices that contain instrumental measurement and response 
(concentration) data, respectively; T and U are the (m x A) scores for the two data matrix; 
P and Q are the (n x A) loadings respective, h is the latent variable number (LV), EX and 
EY are the respective residues. However, if block Y is univariate, weight Q is set to 1 [11].

The linear relationship between the two matrices is established by the correlation of the X and Y scores 
for each LV (h), according to Equation 3: [12]

	  	 (3)

where, Uh is a matrix that contains the properties of all samples (concentration), bh is a vector 
that contains the model parameters, Th is a matrix that contains instrumental measurement 
data (spectrum) for the calibration samples and E is a matrix that represents noise.

The PLS model was constructed by minimizing the waste matrices EX and EY, at the same time, thereby 
obtaining a linear relationship between t and u, through the method of cross-validation by the venetian 
blind criterion, with 14 blocks of data division and with two samples per block. The number of LVs that 
provide the lowest RMSECV was selected, following the requirements of ASTM E1655-55 (2012) [13].

Once completed, the model was validated based on the determination of the following figures of merit: 
selectivity, sensitivity, analytical sensitivity, limit of detection, limit of quantification and test for systematic 
error (bias and tbias), according to the equations presented in Table I [14–17]. The fit of the PLS model 
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was analyzed based on the correlation between the current and predicted concentration values of the 
calibration and forecast sets.

Table I. Equations used to calculate the merit figures of the PLS model*

Figure of merit Equation

Selectivity

Sensitivity

Analytical sensitivity

Limit of detection

Limit of quantification

bias

SDV

tbias

*where,  is the predicted value using the PLS model;  is the reference value for the 
sample I; nval is the number of validation samples; nâsi is the norm of the NAS vector and 

 is the norm for each spectrum;  is the vector of the final regression coefficients,  is 
the standard deviation value of 9 kerosene samples.

RESULTS AND DISCUSSION
Spectrum MIR

Figure 1 shows the MIR spectra of kerosene/palm kernel biokerosene mixtures in the concentration 
range from 1.00 to 70.00% (v/v) before being pre-processed, where noise is observed in the region from 
600 cm-1 to 700 cm-1 and low signal variation in the region from 3100 cm-1 to 4000 cm-1.

Figure 2 shows the MIR spectra of (a) kerosene (b) palm kernel biokerosene and Figure 3 shows 
the MIR spectra of kerosene/palm kernel biokerosene mixtures in the concentration range from 1.00 to 
70.00% (v/v) pre-processed. In these spectra, similarities are noted in the following significant absorption 
bands: at 2950 cm−1 – attributed to the asymmetric stretching vibrations of the C−H bond of methyl 
groups (−CH3); at 2923 cm−1 – attributed to the asymmetric stretching vibration of the C−H bond of 
methylene group (−CH2); at 2851 cm−1 – attributed to the symmetrical stretching vibration of the C−H 
bond of methylene group (−CH2); at 1451 cm−1 – attributed to the asymmetric angular deformations of the 
C−H bond of methyl groups (−CH3) and at 1379 cm−1 – attributed to the symmetric angular deformations 
of the C−H bond of methyl groups (−CH3) [18,19].

Rapid Quantification of the Palm Kernel Biokerosene Content in Mixtures with Aviation Kerosene 
using MIR Spectroscopy and Multivariate Regression by PLS



159

Figure 1. Unpreprocessed MIR spectra of kerosene/palm kernel biokerosene 
mixtures in the concentration range from 1.00 to 70.00% (v/v).

Figure 2. MIR spectra of (a) kerosene (b) palm kernel biokerosene.

However, the spectrum of kerosene differs from the spectrum of bio-kerosene, mainly in the 
characteristic bands of bio-kerosene, found in the 1744 cm−1 spectral regions, attributed to νC=O of 
acylglycerols; from 1200 to 1119 cm−1, attributed to the stretching vibrations of the C−O group bond 
in esters of type O=C−(OR) [18,19]. That is why, when mixed (Figure 3), these characteristic bands are 
evident. However, it is difficult to attribute each spectral profile to a specific concentration based on visual 
analysis. To this end, the use of chemometric tools is essential.

Braz. J. Anal. Chem., 2021, 8 (32), pp 155–164.
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Figure 3. Pre-processed MIR spectra of kerosene/palm kernel biokerosene mixtures in the 
concentration range from 1.00 to 70.00% (v/v).

PLS Model
Figure 4 shows: a) the root-mean-square error of cross-validation (RMSECV) and root-mean-square 

error of Calibration (RMSEC); b) the accumulated variance captured in blocks X and Y obtained as a 
function of the amount of the Latent Variable (LV) chosen for construction of the PLS model. In this figure, it 
can be seen that the 5 LVs chosen to build the PLS model provide less errors and greater captured variance, 
that is, they represent 99.99% and 99.98% of the variance explained in blocks X and Y, respectively.

Figure 4. (a) Root-mean-square error of cross-validation (RMSECV) and root-mean-square error of 
Calibration (RMSEC), (b) Accumulated variance captured in blocks X and Y.

Table II presents results of the parameters and figures of merit, calculated for the PLS model, where it is 
observed that the values of root-mean-square error of cross-validation (RMSECV), root-mean-square error 
of calibration (RMSEC) and root-mean-square error of prediction (RMSEP) were in agreement because the 
RMSEP was higher than RMSECV and RMSEC. In addition, the RMSEP value is considered acceptable 
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according to the Brazilian standard ABNT NBR 15568 because it is less than 1% [20] and are close to 
the values obtained in some quantification models published in the literature [21,22]. It is also observed 
that a good agreement between the parameters is evident because RMSEC was lower than RMSEP. The 
calculated tbias value was lower than tcritical, which means that there are no systematic errors in the model.

The value of the LQ obtained in the model is higher than the LD, demonstrating a good agreement 
between the parameters because the lowest concentration of the substance of interest that is measured 
with a maximum uncertainty of 10% is within what can be detected. The sensitivity expresses an increase 
in the signal fraction when the concentration of the analyte of interest has a high value for one unit, 
however, its value was estimated at 0.871. The analytical sensitivity of the model is relatively high, showing 
that the influence of residues in the prediction of unknown samples is low. The inverse of the analytical 
sensitivity value shows that the PLS model is able to distinguish differences between samples with a 
variation of 0.052. The selectivity was good, which means that the PLS model did not present significant 
overlap of the interference signal with the analyte.

Table II. Results of the accuracy parameters and figures of merit

Figure of Merit Value

Accuracy

RMSEC (% v/v) 0.175

RMSECV (% v/v) 0.373

RMSEP (% v/v) 0.708

Analytical sensitivity/ % (v/v) 19.20

Inverse of analytical sensitivity /(v/v)-1 0.052

Sensitivity/ % (v/v)-1 0.871

Selectivity 0.375

Limit of detection / % (v/v) 0.171

Limit of quantification / % (v/v) 0.521

bias 0.118

SDV 0.364

tbias 1.782

tcrítico 2.051

The evaluation of the fit of the PLS model by correlating the measured and predicted values of the 
calibration and prediction sets is shown in Figure 5. In this figure, it can be seen that the PLS model showed 
a good fit because a high correlation between the two values was evident, with the correlation coefficient 
(R) exceeding 0.99. Figure 6, illustrates the plot of the real concentration versus absolute errors, showing 
uniform distribution in a horizontal range. Ideally, the residuals should show random behavior and constant 
variance in the concentration range, as seen in the calibration set samples. Although the residuals from the 
prediction set show a trend, the predicted concentrations are not severely affected.

Braz. J. Anal. Chem., 2021, 8 (32), pp 155–164.
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Figure 5. Fit of the PLS model through the actual values (experimental concentrations) 
versus predicted values of the calibration and forecast sets.

Figure 6. Residues of the PLS model for the calibration and prediction set

Figure 7 shows the weights of the latent variables of the PLS model, where it can be seen that the 
LV1 describes the variables of the characteristic bands of the biokerosene, with 92.05% of the explained 
variance. The remaining latent variables describe the variables of the common bands, with 7.94% of the 
explained variance.
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Figure 7. Plot of the loadings of LV1, LV2, LV3, LV4 and LV5 versus variables for the 
application of the PLS model.

CONCLUSIONS
The application of multivariate regression by PLS in the MIR spectra of kerosene/palm kernel biokerosene 

mixtures allowed the development of a methodology to quantify the content of this biokerosene. The 
efficiency of this methodology was analyzed based on the figures of merit and the fit of the model. The 
results of the figures of merit were in agreement with the requirements established in the standard ASTM 
E1655-05. The model fit showed a high correlation between actual and predicted concentration values 
of the calibration and prediction sets, with a correlation coefficient exceeding 0.99 and with relatively low 
errors.

These results demonstrate that the developed methodology has the potential to be explored by regulatory 
agencies to monitor the content of biokerosene in a mixture with kerosene, because it is relatively low cost 
and allows for quick, direct and in situ analyzes.
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