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 The temporal estimation of the fingermarks deposition 
at crime scenes is a recurring issue in forensic 
identification. To study this challenging topic, a 
preliminary study was proposed to develop a method 
of fingermark analysis by Fourier Transform Infrared 
Microscopy (µ-FTIR), using chemometric tools for time 
separation in a six-day aging study. The samples were 
collected and analyzed at hour zero, 3 days (72 hours), 
4 days (96 hours), 5 days (120 hours) and 6 days (144 
hours). The samples were separated into a calibration 
set and a test set, using Kennard Stone. Following, a 
comparison between variable selection tools was 
made of the Ant of Colony (AOC) and the Genetic 
Algorithm (GA) were used with subsequent application 
of the Linear Discriminant Analysis (LDA). The results 
showed that in the analyzed samples there was a 
predominance of sebaceous material because of the 
presence of saturated esters signals, with two regions 
of interest in the infrared spectra, the first being 1800 

- 1100 cm-1 and the second region being 3000 - 2800 cm-1. The statistical tools could group the fingermarks 
by donors and by age, emphasizing the separation within the tested period. More studies need to be 
carried out, but this work provide that µ-FTIR associated with chemometric analysis was able to separate 
fingermarks samples aged for up to a week. 
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INTRODUCTION 
Fingermarks are the most common vestiges in crime scenes, bringing information about an individual 

present who may or may not be responsible for the commission of a crime [1]. For criminal investigation, the 
fingermark identification remains the most widely used [2]. One of the great challenges in the fingermark 
analysis is the aging establishment, that is, the period elapsed between the trace deposition by the donor 
and the analysis or development by forensic expertise. Questions about this subject have been the 
object of investigation by the academy and expert forces [1–7]. Placing events and evidence in time is an 
essential issue in investigations and, among the typical issues of forensic science, time is generally not 
explored. The reason for this can be attributed to the issue complexity [4]. The latent fingermarks aging 
is one of the most challenging problems in criminalistics. In many cases, it can be unbelievably valuable 
information, providing tools that will nourish the court’s conviction regarding participation or elimination 
of potential suspects, reducing the time spent in the investigative process, minimizing errors during the 
prosecution and allowing the correct application of duties, rights and sanctions [5,6,8]. Therefore, the 
methods development that can estimate latent fingermark aging may represent an improvement in forensic 
procedures [9]. 

Specifically to fingermarks, which are physical evidence formed by biological materials, there are three 
main factors that influence the temporal analysis: (1) conditions inherent to the donor of the fingermark; 
(2) transfer conditions (deposition and the substrate or support); (3) environmental conditions in which 
the evidence is exposed. The time lapse determination between the deposition of the fingermark and its 
analysis will be the result of the complex and dynamic interaction of all these variables [7]. 

Different analytical methods have been employed to aging and chemical profile studies, such as gas 
chromatography, mass spectrometry and spectroscopy methods - Infrared and Raman [5-8]. Among these, 
spectroscopy methods are mostly non-destructive, low cost and quick analysis time (seconds) [10] and 
when it is combined with microscopy can provide good results in fingermark studies [9,10]. Spectroscopic 
methods, especially infrared, have been applied to characterize the composition of fingermarks, specifically 
the lipid components [11]. The Fourier Transform Infrared Microscopy (µ-FTIR) method is portrayed in the 
literature as the most common spectroscopic technique for fingermark analysis [12]. The operation of 
the µ-FTIR in atmospheric conditions is a significant attribute for the study of latent fingermarks, since 
compositional or morphological changes can be observed on different surfaces both as a function of the 
time elapsed after deposition and according to the environmental conditions [11,12].

The practical implementation in the forensic routine of aging fingermark studies is still put to the test. 
For forensic practices, the time estimation of fingermarks can change the course of an investigation. 
Weynermann et al., (2011), developed as the main strategy for the improvement of fingermark aging 
methods, the selection of a chemical target present in the sample that changes over time, but being 
reproducible and measurable [5]. Focusing on the analysis of lipids, one of the principal classes of 
compounds of interest in aging studies, the characterization of di- and triglycerides demonstrated rapid 
degradation over time and are frequently present in this type of sample [13,14,15]. 

Spectroscopic methods are intrinsic to the subsequent use of chemometrics, generating results that 
can increase the correlation between samples [11]. Multivariate data analysis (MDA) involves many 
tools, like variables selection using the ant of colony algorithm (AOC) genetic algorithm (GA) and one 
of the supervised methods of pattern recognition, like Linear Discriminant Analysis (LDA), that select the 
information on infrared spectra and describing relationships between samples and variables.

Therefore, this work developed a preliminary study for aged fingermarks analysis using µ-FTIR and 
chemometric tools for analysis optimization and pattern recognition between samples.

MATERIALS AND METHODS
Latent Fingermarks Deposition and Development

Latent fingermarks were collected from three Caucasian female donors, aged 30-34 years with a typical 
diet and without using cosmetics to minimizes the chance of anomalous results [16] Donors performed 
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their daily activities, the only condition where they did not wash their hands 45 minutes before collection. In 
moments before the collection, donors were asked to rub their fingers on the forehead and nose [7,16]. The 
deposition protocol comprised the collection of the fingermark of the right thumb on a reflective microscope 
slide provided by Agilent Technologies, previously cleaned with ethanol, exerting a force between 1.0 and 
1.5 kg for 15 seconds. Two samples were collected, one from the right thumb and other from the right index 
finger. 

To simulate real materials that are collected at crime scenes, different deposition surfaces was tested 
like: soda can; glass slide covered with self-adhesive film; candy packaging; silver tape; stiletto blade; 
aluminum foil; Tetra Pak® box. 

Kinetic Conditions
The monitored times in the analysis were: hour zero, 3 days (72 hours), 4 days (96 hours), 5 days (120 

hours) and 6 days (144 hours). It is described in the literature that the most significant chemical changes 
in fingermarks occur in the first week after deposition. The choice of short intervals was made to observe 
these changes [12,16]. The samples were kept at room temperature with daily monitoring and exposed to 
light. All analyzes were performed in the morning, five spectra were collected per donor and three spectra 
were selected, considering the best quality of the collection, with less external interferences and noise. 
Zero-time analyzes were performed up to one hour after the first collection. The analysis region was 
observed in the microscope connected to the equipment, choosing five random points on the fingermark 
ridges as shown at Figure 1. 

Figure 1. Visualization of fingerprint ridge details with naked eye and with microscopy (1:500 µm).

Equipment and Method Conditions
The analyzes were performed on the Cary 630 FTIR Spectrometer (Agilent Technologies - Santa Clara, 

CA - USA) with Survey IRTM Infrared Microspectroscopy Accessory (Czitek-Danbury, CT - USA). 320 
scans were collected per sample at a resolution of 16 cm-1 with a spectral range of 4000 - 650 cm-1. The 
aperture of the accessory lens was 200 µm and infrared mode in reflection and Y-Axis unit in absorbance. All 
samples were visualized, the analysis points were photographed, and the infrared spectra were collected 
using MicroLab FTIR Software (Agilent Technologies - Santa Clara, CA - USA). Background collection was 
carried out at each analysis to minimize external influences and level the conditions of each sample.
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Chemometric Tools 
The Matlab Version 7.10.0.499 software (R2010a - MathWorks Inc. Natick, MT, USA) [17] was used 

with the Kennard-Stone algorithm [18]; the routines of: PCA Toolbox 1.5 (Milano Chemometrics and QSAR 
research Group) [19]; Ant of Colony (AOC); Genetic Algorithm (GA) and Linear Discriminant Analysis 
(LDA) Variable Selection Toolbox [20]. 

The Kennard-Stone algorithm selects samples with a uniform distribution, starting with a selection of 
two samples with large Euclidean distance in a sample space. For each of the remaining samples, the 
lower distance is calculated with respect to the samples already selected. Then, the sample with the 
smaller distance is retained, and the procedure is repeated until a certain number of samples is selected 
[18]. 

It was used a supervised method to perform the samples classification. Due to the large number of 
spectral variables, it was necessary to apply a variable selection tool. Among the available resources in the 
software, the GA was chosen for being a classic tool while the AOC is an emerging tool, both consolidated 
in chemometrics studies [21].

The GA is an adaptation of the evolutionary systems of natural selection developed by Darwin applied 
as a resource in mathematical and computational tools. The principle of GA is to create a primordial set 
with several possible solutions to the problem. This set is called the initial population and each solution 
belonging to this population is called an individual. In this case, the genetic material is a chromosome, 
and this is an individual itself. This codification of individuals aims to enable the application of genetic 
operators and the concept of natural selection on existing solutions, thus being able to combine their 
genetic materials, searching for more and more adapted individuals over several generations, that is, 
solutions with a lower degree of error for the problem addressed [21]. The AOC is an algorithm inspired 
by the cooperative behavior of real ant of colonies, which search for the best path (shorter distances and 
fewer obstacles) between the colony and a food source, coordinated by pheromones. This tool has been 
successfully employed as a powerful resource for selecting variables from chemical data in multivariate 
calibration, with linear discriminant analysis (LDA) [21].

The LDA is a linear combination of original characteristics of the sample set which is characterized by 
producing the maximum separation between two populations. And its main objectives are to verify if the 
groups are correctly discriminated, to classify unknown observations and to verify which are the most 
important variables for the discrimination of these groups [19,21]. This tool takes a different approach in 
that it considers the existence of classes for the data; projecting the probability distribution of the data on 
the axes, and therefore not only maintains but highlights a linear separation of the data if it exists [19,21]. 

RESULTS AND DISCUSSION
Spectroscopy Findings

First, it was select the spectra region of analysis choosing the region between 1749 and 649 cm-1 

totalizing 150 variables. This region was selected because it contains characteristic information about 
the sample, called fingerprint region, and other relevant signals for this study. The region selection is 
also necessary for limiting variables during the process of understanding the results, focusing on the 
recognition of patterns in the sample [22] The spectra were normalized between 0 and 1 (Figure 2). The 
normalization pre-processing step was used to transform the original data into an appropriate model for 
dataset processing, performed by scaling values in the indicated range [23,24].

It should be noted some limitations of the analytical tool, only fingermarks deposited on the company’s 
microscopy slide showed spectra with adequate resolution for identifying bands. There was also a 
limitation regarding the image resolution, not being possible to observe the entire fingermark in a widefield 
microscopy. Therefore, it was not possible to view a complete fingermark image or make an automatic 
point selection for spectral analysis. 
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Figure 2. Normalized spectra with the selected fingerprint region.

Studies show that the infrared bands of fingermarks are similar between donors [5–7,25–28] as can be 
seen in Figure 3, corresponding to the overlay spectra of the three donors and their microscopic images. 

Figure 3. Comparison of spectra of the three donors with visualization of the microscopic 
region with an increase of 200 µm of selected analysis.
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The signals correspond mainly to the major functional groups that form wax esters and fatty acids. 
Figure 4 summarizes the main signs observed in the standard spectrum. In the samples collected from 
the three donors, it was not possible to evidence eccrine secretions, as there are no signs that indicate 
vibrations of secondary amides, coming from proteins. According to Girod et al. (2015), eccrine secretions 
are represented by N-H stretches in the regions of 3200 and 1500 cm-1 [16], which is not reported in our 
study. In fact, it is more common to find patterns of spectra corresponding only to sebaceous secretions 
[12,16], as evidenced in our samples. In all samples collected, it was possible to see a pattern in the 
spectrum in which there are two more informative absorbance regions, with characteristic vibrations 
indicative of the presence of lipids because they have signs of saturated esters. The first region being 
1800 - 1100 cm-1 and the second region being 3000 - 2800 cm-1. 

Figure 4. Fresh fingermark sample spectrum containing sebaceous material with main vibrational 
bands identified in the table [12,16].

The tests carried out on the materials to simulate different surfaces was inconclusive. All materials 
allowed the equipment to focus on the sample, making a clear image and allowing the colection of the 
background stage prior to each analysis. However, the materials had different roughness, making it difficult 
to locate the region of interest for analysis; thus, the infrared spectrum was full of noise, with baseline 
elevation and overlapping signals. Therefore, only the reflective slide provided by the equipment company 
resulted in a possible image to identify the fingermarks and the region of interest for analysis. Despite 
differences in the amount of material deposited by the 3 donors, it is possible to see characteristic signs 
pattern among the donor’s samples.
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Chemometric Findings
The Kennard-Stone algorithm was applied to divide the samples into the training and test sets in order 

to assess whether variable selection models would be applicable to the samples. Then, each variable 
selection model was tested five times in which the test set was tested against the model. Figures 5 
show the regions of the spectrum selected by AOC and GA algorithms for donor and sample separation, 
respectively. It was acchieve better separation of the sample set in relation to the test set. Some regions 
chosen in the two models are similar, however, it was observed that the region with less intense signals is 
not chosen by the AOC model, which may suggest a performance slightly lower than the GA. The results 
were organized below according to the sample separation between time and donors.

DONORS

AOC

GA

Figure 5. Regions of interest responsible for sample separation scores.
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TIME

AOC

GA

Figure 5. Regions of interest responsible for sample separation scores. (Continuation)

Donor Separarion Results
Comparing the results of AOC and GA with subsequent application of the LDA (Figure 6) it is possible to 

observe a clear sampling separation of both the training set and the test set for the three different donors. 
Thus, with these tools, it was possible to see that even with a small amount of samples the differentiation 
of classes (donors and time) could be performed. With regard specifically to fingermark samples, it is 
considered impossible to conduct an aging model that works for all types of fingerprints because of 
the great variability between different donors and the same donor [5,6,11,16]. Thus, Girod et al. (2015) 
suggested the construction of a new model in order to study from the initial composition to the aging of the 
sample from a single donor [16]. Based on this idea, we use only three female donors, because female 
samples tend to have greater intra and inter donor variation (make up and cosmetics uses and hormonal 
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differences). It can be seen in Figure 6 that the prediction samples (stars) are slightly apart compared to 
the training samples (balls). In both results only a sample of the test group is shifted in the graphs, this 
shows that in terms of responses the methods are equivalent. In addition, GA is a slightly better model, but 
there is no greater representativeness than the point of discarding the AOC model.

GA

AOC

Figure 6. Results of sample separation by GA and AOC models.

Time Separation Results
One of the forms to see fingermarks aging is to follow the time evolution of the sample. According to 

the number of samples available, only four of the six times analyzed were used to create the test set and 
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training set. The result was similar for both GA and AOC, in which, even with a small number of samples, 
it was possible to observe a trend of separation, as shown in Figure 7. Thus the application of this model 
can provide consistent results if applied to a larger number of samples.

GA

AOC

Figure 7. Samples separation in four days.

The spectra of aged fingermarks originally containing mainly lipid compounds (i.e., sebaceous 
secretions) showed a decrease in the intensity of all vibrational bands. According to Girod et al. (2015) 
study, fingermarks could be grouped by age, but the aging profile was significantly influenced by storage 
conditions and also by substrate when specimens were stored in the dark [16]. 
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Table I shows the performance of the models for the separation between donors and the analysis 
times. The classes are the sample categories, being three donors and four times evaluated, excluding 
the test set. Precision expresses the agreement degree between the results of a series of measurements 
carried out for the same homogeneous sample under determined conditions [29–31] and it was calculated 
according the Equation 1, for each class. The sensitivity, samples belonging to the class and classified 
correctly in this class, were considered for the evaluation of the classification achieved with the multivariate 
methods and was calculated to Equation 2. The specificity, samples not belonging to the modeled class 
and correctly classified as not belonging, was calculated according to Equation 3: 

	  	 (1)

	  	 (2)

	  	 (3)

where TP is the number of true positives; TN is true negatives; FP is false positives and FN is false 
negatives [29-31]. It is possible to observe the performance of the models proved to be superior for sample 
separation by donor, due to greater accuracy and less errors. However, although there is no clear division 
as to the analysis times, it is possible to see a homogeneity of the classes in the samples for time analysis.

Table I. Performance of selected models for separating samples into donors and time

Samples Donors Time

Variable Selection GA AOC GA AOC

Accuracy rate (%) 93.98 91.67 65.97 77.43

Misclassification rate (%) 6.01 6.02 34.02 22.56

Total errors 1 1 6 4

Class 1 2 3 1 2 3 1 2 3 4 1 2 3 4

Precision 1 0.75 1 1 0.75 1 0.5 0.5 0.33 0.5 0.5 0.66 1 0.5

Sensitivity 1 1 0.75 1 1 0.5 0.33 0.33 0.33 1 0.33 0.66 0.66 1

Specificity 1 0.88 1 1 0.88 1 0.87 0.87 0.75 0.77 0.87 0.87 1 0.77
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The fingermarks samples have great variability between donors [4-7], so, it was decided to carry out 
the pilot study with a small number of donors in order to establish a method that could be reproduced in 
the forensic routine. Thus, an preliminary aging model was built with 3 donors of the same sex to verify 
whether samples would be separated without directly considering gender as a variant. The use of the 
µ-FTIR method provided comparable spectra in a short period of analysis. The chemometric tools allowed 
to see that in a single infrared spectrum collected in the described parameters it contains thousands of 
variables that, although correlated, much information does not necessarily explain a significant variance 
related to differentiation by time, environmental exposure or effects of the sample itself. Therefore, the 
selection of variables performed by chemometrics was important [30]. 

The use of AOC and GA reduced the data set, selecting the relevant variables and the LDA allowed 
the separation of samples by time. Even for a period of six days, it was possible to observe that the most 
important transformations occurred in the samples from time zero to 72 h, 120 h and 144 h, as observed 
in Figure 8. This opens the possibility of sparing the analyzes for the next studies.

Figure 8. Overlaid samples of donor 2 in aging parameters. The inversion of bands shown in the 
middle of the spectrum, between 2300 - 200 cm -1, corresponds to CO2. These changes can occur 
in the spectrum because the sample is not subjected to vacuum during an analysis, thus, the 
spectrum can undergo changes according to the instability of the environment.

The limiting steps of the study are: (i) it was not possible adapted the method for other surfaces of 
sample collection; (ii) need to increase the number of the samples and expand to both genders to be more 
representative; (iii) need to adapted to be used in real cases. 

In general, it was possible to observe a pattern in the fingerprint spectra analyzed by µ-FTIR corresponding 
to sebaceous components of the samples. For a period of six days it was possible to see an decreasing 
intensity of the compounds as the days passed, suggesting a characteristic degradation capable of being 
observed in studies related to fingermark aging analysis. 

CONCLUSIONS
A preliminary fingermark study was carried out with three donors in order to establish a sample aging 

profile to suggest a temporal estimate of the forensic evidence. The µ-FTIR method enabled a fast and 
non-destructive analysis, but with some but with some limitations concerning about the surface were 
fingermark can be analysed. It was possible to verify the presence of sebaceous components that had 
degradation by decreasing the signal in the infrared spectrum in the period of six days and also evidenced 
by the use of the GA and LDA chemometric tools. In addition, it was possible to separate donors, even 
with a small number of samples and a short study interval. The µ-FTIR method linked to the use of 
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chemometrics is promising for the reality of the forensic expertise in Brazil and is already consolidated in 
other countries, but it needs more concrete studies to be placed in the forensic routine as an additional 
resource in the forensic identification protocols. 
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