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Although Linus Pauling had an exceptional 
scientific contribution to the study of 
chemical bonds, reported in his book The 
Nature of Chemical Bond, the lousy image 
he got for the X-ray diffraction drove him to 
an unstable structure with an unreal DNA 
triple helix publication. Oppositely, for the 
consecration of James Watson & Francis 
Crick, they had the opportunity to enter 
science history using the right image of 
X-ray to propose the famous DNA double 

helix structure correctly. This chapter of science is an excellent example of how analytical chemistry 
performance affects horizons and scientific advances. Today the complexity of the systems is more 
significant and understanding how all proteins truly work into cells and organisms is the current challenge 
from proteomics. Comprehending how analysis is carried out and how instruments work could promote 
new insights to improve the analytical performance in proteomics. Here we described an overview based 
on our expertise on the analytical chemistry toolkit for proteomics analysis: shotgun, bottom-up, middle-
down, top-down, and native proteomics, and their inherent instrumentation technologies. In addition, a 
detailed discussion of the analytical figures of merit in proteomics analysis is provided. We also address 
the limitations in multidimensional liquid chromatography and tandem mass spectrometry platforms. 
Furthermore, we present some perspectives in bioinformatics, mathematical modeling simulations, and 
chemometrics tools, as well.

Keywords: instrumentation, liquid chromatography, mass spectrometry, bioanalysis, biopharmaceuticals.

INTRODUCTION 
The importance of studies on the proteins: implications in medicine and economics

The advances in proteomics have many implications for the economic and scientific fields because 
i) the modern pharmaceutical industry is developing biopharmaceutical, most of them based on 
proteins; ii) the current bet to the next advances in medicine is molecular diagnosis and the therapy 
linking proteome anomalies to a more in-depth characterization of diseases; iii) the final products from 
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the machinery of living beings are proteins. Therefore, the future will be even more exciting to molecular 
information from proteomics than currently from genomics [1,2].

In any of these examples, the chemical elucidation of proteomes and protein is critical to advancing the 
subject. However, when macromolecules are introduced in to an analytical equipment for characterization, 
the complexity of its chemical structure imposes various drawbacks that affect several analytical figures 
of merit. Giant molecules have many possibilities to change conformation due to the free rotation of 
any sigma bond. They show a complex nature driving to several intra- and intermolecular interactions 
possibilities and many structural conformations. For that, the next generation of analytical scientists needs 
to overcome the challenges of analyzing complex macromolecular samples that mean understanding how 
to drive the proteomics analysis and the instrumentation modes to its maximum. Although the theme is old 
and pertinent, the discussion in the proteomics community needs more insights [1,3,4].

Proteins provide essentials functions in all biological steps. They are catalyst agents in biochemistry 
reactions, carry and store other molecules, provide signal transduction, they are essential constituents 
in the structure of various biologics organisms, etc. Thus, reliably unraveling the biological process of 
proteins in the cell is the path to the solution and understanding of various diseases, suggesting advances 
in chemistry, pharmacy, biology, biochemistry, medicine, and economic development [1,2].

In practice, scientists in molecular medicine compare healthy samples with samples containing the 
questioned disease. Using analytical and bioinformatics techniques, they monitor the appearance of 
analogous proteins in the cell or monitor the variation in their quantity, or even map changes in the three-
dimensional structure that can represent the origin of the disease [3]. Some proteins have the function of 
controlling the normal condition of cells. Characterization of them and understanding the amount suitable 
to an individual’s necessities opens the opportunity for creation of supplements or drugs that promote 
the normal functionality of cells, preventing the proliferation of disease into an organism. They are the 
basis of biologicals and biosimilar medicines, most of them made up of monoclonal antibodies. These 
biopharmaceuticals have revolutionized the treatment of many previously untreatable diseases. Making it 
one of the top products of the modern pharmaceutical industry [4].

In the 90s, BASF Pharma, in partnership with Cambridge Antibody Technology, developed the 
incorporated drug of the protein Adalimumab whose market name is Humira®. It is intended for the anti-
inflammatory treatment of several chronic diseases, such as i) arthritis, ii) ankylosing spondylitis, iii) Crohn’s 
disease, iv) colitis, and v) psoriasis. The Institute for Applied Economic Research (IPEA) mentioned that 
this product generates US$ 10 billion a year of revenue to the German chemical company [5]. Several 
Brazilian pharmaceutical companies have started the production of biosimilars in the last decade. In Brazil, 
despite the economic crisis, this sector presented annual growth of 10%. The current increase in the 
aging of the population in emerging countries drives the need for constant innovation, but the expiration 
of patents for biosimilar medicines drives the plans of the pharmaceuticals companies for expanding the 
market. 

State of the art: multidimensional proteomics for cell biology
A proteome concerns the set of all proteins expressed in a cell, tissue, or organism, from the functional 

expression of a specific genome. Thus, the term proteomics encompasses strategies for the identification 
and quantification of all proteins from a specific proteome. The proteome is a dynamic system in which 
each protein has interconnections in the cell that can have many different properties (chemical, physical, 
and biological dimensions). When analyzed altogether, it describes the phenotype of the cell/organism. 
Although it is possible to obtain relevant information from proteomes, the diversities, and the dynamic 
nature of living systems infer several drawbacks to measure these properties, meaning that is a great 
challenge to analytical chemistry and bioinformatics fields to overcome them. Also, there are many different 
proteomic profiles for the same biological system that depends on proteins expressed at the moment of 
sample collection. This fact represents a true challenge to get a representative sample and to control the 
statistical variable in terms of random errors [6].
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Thus, bioanalytical chemistry and bioinformatics seek strategies for a systemic understanding of the 
proteome, which includes different experiments to elucidate the different properties of proteins, such as 
i) total abundance, ii) expression of isoforms, iii) turnover number, iv) post-translational modifications, 
and vi) molecular interactions. The connection of the results on the different properties of proteins 
and proper biochemical interpretation is currently called multidimensional proteomics. That allows a 
global view of the proteome, suggesting several scientific advances, especially in drug development 
and understanding of currently incurable diseases. In Table I, Professors Mark Larance and Angus I. 
Lamond of the University of Dundee, described the main experiments used to measure the different 
properties (dimensions) of the proteome [6].

Techniques applied to proteomics
Proteomics experiments can be classified in two ways: i) analysis of peptides from final products of 

proteolytic digestion from specific enzymes, named bottom-up, shotgun, and middle-down proteomics, 
or ii) analysis of intact proteins, named top-down and native mass spectrometry. Analysis of peptides 
allows greater identification of species, and it is currently the most suitable technique for comprehensive 
characterization of a proteome and comparison between sample treatments. Analysis of intact proteins 
allows better structural characterization of macromolecules and, generally, they come from a less complex 
mixture [7–12]. The readers must have in mind that if there are various ways of analyzing a proteome, 
a single technique cannot solve alone completely all questions to understand them. Each technique is 
complementary to one another.

Table I. Some of the main dimensions and complexities of a proteome. There are, however, other dimensions not 
described in this table. [Reprinted (adapted) with permission from [6] Larance, M.; Lamond, A. I. Nat. Rev. Mol. 
Cell Biol., 2015, 16 (5), pp 269-280 (https://doi.org/10.1038/nrm3970). Copyright© (2021), Springer Nature.]

Dimension Examples of techniques used*

Abundance 
(absolute and relative)

Label-free quantitation
SILAC
15N-labelling
NeuCode SILAC
Dimethyl-labelling
TMT
iTRAQ

Cell cycle regulation
Centrifugal elutriation
Chemical inhibitors of cell cycle regulators
FACS (for DNA content or phase-specific markers)

Tissue distribution
Dissection
FACS (for cell-type-specific markers)

Interactions
Affinity-enrichment (endogenous immune-precipitation or tagged fusion protein pull-down)
Protein correlation profiling
Proximity-labelling

Post-translational
modifications

Affinity enrichment: TiO2

Affinity enrichment: IMAC
Modification-specific antibodies
Liquid chromatography: IEX
Liquid chromatography: HILIC
Liquid chromatography: ERLIC

Braz. J. Anal. Chem., 2021, 8 (31) pp 51-73.
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Dimension Examples of techniques used*

Localization

Centrifugation
Protein correlation profiling
Proximity-labelling
Detergent solubility

Turnover
Metabolic pulse-labeling
Cycloheximide treatment

Isoform expression High sequence coverage to identify isoform-specific peptides
Targeted mass spectrometry analysis may be used to detect isoform-specific peptides

Solubility Thermal denaturation followed by differential centrifugation

Activity
Analog-sensitive kinases
Activity-dependent binding domains

Tertiary Structure
Protease sensitivity
Crosslinking

*ERLIC, electrostatic repulsion hydrophilic interaction chromatography; FACS, fluorescence- associated cell sorting; HILIC, 
hydrophilic interaction chromatography; IEX, ion-exchange chromatography; IMAC, immobilized metal affinity chromatography; 
iTRAQ, isobaric tags for relative and absolute quantification; LC-MS/MS, liquid chromatography followed by tandem mass 
spectrometry; SILAC, stable isotope labeling by amino acids in cell culture; TiO2, titanium dioxide; TMT, tandem mass tag.

Bottom-up proteomics refers to the analysis of proteolytic digests made under different chromatography 
fractions of the whole proteome of interest. Shotgun proteomics is the proteolytic digestion performed 
under the entire proteome (without previous fractionation of the sample). Both bottom-up and shotgun 
seek complete cleavage of peptides bonds, therefore, products with low molecular weight. Analysis of 
small molecules such as peptides simplifies sample handling, separation, and identification performance 
in the analytical instruments. However, after analyzing the results (a deluge of peptides), it is imperative 
to use bioinformatics that provides the sequencing of the peptides and proposes the proteins identity. 
This subject refers to protein coverage; the ideal condition would be the sequencing of all peptides from 
all proteins, meaning 100% coverage of each protein from proteome. However, this fact has proved to be 
very challenging—nearly impossible—because of the limitations from shotgun proteomics, where most 
peptides are lost or not detected in the analytical method [13,14]. Thus, the software uses other metrics to 
indicate the accuracy of relative protein identification. Besides the coverage of the proteins, other issues 
are the score, the number of peptides, the number of unique peptides, and the number of proteins [15–17].

Top-down proteomics is the study of proteoforms, i.e., the analysis of intact proteins, usually molecular 
masses of 30 kDa. Top-down proteomics tolerates structural changes arising from the conditions of the 
method or sample preparation. In native protein mass spectrometry, another class of intact protein analysis, 
non-covalent interactions (molecular interactions) between proteins, are kept. Thus, the technique uses 
analytical method conditions close to the biological middle of origin. Therefore, it is useful to study functional 
and structural dynamism from interactions that occur into proteins complexes, i.e., in the quaternary state 
of proteins (protein-protein and protein-ligand complexes). Intact protein analysis shows many challenges 
in sampling, separation, and detection processes than peptides analysis [10,11].

Middle-down proteomics is the analysis of peptides of larger molecular weight than shotgun and bottom-
up (> 5 kDa) or limited peptide cleavage. This approach allows studies on the relative characterization of 
proteoforms with a good number of biomolecular species for identification. The technique is the middle 
ground between bottom-up/shotgun and top-down/native protein mass spectrometry. Figure 1 summarizes 
the different techniques applied to proteomics analysis [7].

Table I. Some of the main dimensions and complexities of a proteome. There are, however, other dimensions not 
described in this table. [Reprinted (adapted) with permission from [6] Larance, M.; Lamond, A. I. Nat. Rev. Mol. Cell 
Biol., 2015, 16 (5), pp 269-280 (https://doi.org/10.1038/nrm3970). Copyright© (2021), Springer Nature.] (Cont.)
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Figure 1. Different types of proteomics analysis and strategies. Left (blue) and center (white): Peptide analysis (shotgun, 
bottom-up, and middle-down proteomics). Right (green): Protein analysis (native and top-down proteomics). In bottom-
up proteomics it is necessary the chromatography fractionation before proteolytic digestion, in shotgun proteomics is not 
required, but after proteolytic digestion liquid chromatography is always used. In top-down proteomics is necessary a mild 
sample treatment, in native is not substantially required. Mass spectrometry and bioinformatics for peptides analysis is 
essentially to sequence peptides into proteins. Mass spectrometry and bioinformatics for proteins analysis is essential for 
characterization of proteoforms. Peptides analysis allows better characterization of the proteome, whereas protein analysis 
allows better characterization of proteoforms.

State of the art in analytical instrumentation for large scale identification for proteomics
Proteomic analysis is complex, time-consuming, and expensive. To solve the proteome’s biomolecular 

constituents before detection and identification is essential to use high separation power techniques, 
preferably automated and reproducible. Currently, multidimensional liquid chromatography (LC×LC) has 
the most appropriate attributes for that. Also, a molecular detection technique for accurate characterization 
is essential. Thus, mass spectrometry is the crucial tool because of its versatility. It allows detection in MS1 
and characterization after fragmentation in MS2 quickly and, most importantly, at the molecular ion level. 
Besides, this technique provides an incredible separation power, separating ions by a difference as low 
as 0.0001 m/z in high resolution instruments. Such versatility of MS adds to the separation power of the 
LC×LC. Therefore, in terms of high orthogonality of separation, the state of the art in proteomic studies is 
multidimensional liquid chromatography coupled to high-resolution tandem mass spectrometry [18–22].

Multidimensional or two-dimensional liquid chromatography (LC-LC and LC×LC)
Multidimensional chromatography is designed for techniques that combine two or more chromatographic 

columns, so for each column, an analogy of a separation dimension is made. Its applicability becomes 
necessary for samples with high complexity, usually > 400 compounds. Figure 2 summarizes when two-
dimensional chromatography (2D-LC) becomes necessary. It is historically verified that the isocratic 1D 
mode allows the separation of up to 10 compounds in an average of 10 minutes of analysis indicated by 
blue area in Figure 2. In contrast, for samples with approximately 100 compounds, it is essential to use a 
gradient, as indicated by yellow area. For samples above 1000 compounds, it is necessary to use 2D LC, 
green area. 

Braz. J. Anal. Chem., 2021, 8 (31) pp 51-73.
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Figure 2. Representation of the evolution of different liquid chromatography strategies on the complexity of a 
sample. The different colors indicate the historical domain of the different modes of separation. [Reprinted (adapted) 
with permission from [22] Stoll, D. R.; LI, X.; Wang, X.; Carr, P. W.; Porter, S. E. G.; Rutan, S. C. J. Chromatogr. A, 
2007, 1168 (1-2), pp 3-43 (https://doi.org/10.1016/j.chroma.2007.08.054). Copyright© (2021), Elsevier.]

Peak capacity definition means the maximum number of components that can theoretically have 
separation in the chromatographic column for a specific time interval of the gradient. The main advantage 
of 2D-LC is the high peak capacity (n), as indicated by Figure 3, where two peaks in 1D are separated 
into four peaks in 2D. This phenomenon occurs due to the differences in selectivity in the solute partition 
process between the stationary phases of the different dimensions [22–24].

Figure 3. Scheme of separation from two chromatographic columns (bidimensional or multidimensional) illustrating 
peak capacity. [Reprinted (adapted) with permission from [22] Stoll, D. R.; LI, X.; Wang, X.; Carr, P. W.; Porter, S. 
E. G.; Rutan, S. C. J. Chromatogr. A, 2007, 1168 (1-2), pp 3-43 (https://doi.org/10.1016/j.chroma.2007.08.054). 
Copyright© (2021), Elsevier.]

J.W. Dolan et al. discuss different ways of measuring peak capacity, where the purpose is to accurately 
measure all the factors inherent to the random errors of chromatographic analysis. However, Equation 
1 and Equation 2 are the most used due to their simplicity, where, n is peak capacity, tR and t1 are the 
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retention time of the last and the first chromatographic peak, respectively, Wb is the average of the base 
width of all peaks, and tg is the gradient time [24,25].

	  	 Equation 1

	  	 Equation 2

The expectation is to obtain high values of n, so the LC strategies to achieve that are: i) decrease the 
rate of the organic phase gradient, ii) use columns of greater length, with a proportional increase in the 
gradient time, and a consequent increase in pressure of the system, and iii) employ columns packed 
with smaller sorbent particles. Achieving better performance in multidimensional chromatography means 
that the separations in the different columns have orthogonality. It is expected that the physical-chemical 
mechanisms in the analyte partition process for each chromatographic dimension are independent; in 
other words, they provide different selectivities [24–26].

Figure 4 defines the theoretical meaning of orthogonality. We can quickly notice the origin of the word 
orthogonality, which comes from trigonometric concepts. That is, each chromatogram is projected at an 
angle of 90°. Thus, when the analytes are randomly distributed in the chromatographic area, they have 
little correlation and high orthogonality. Therefore, excellent peak capacity. If the analytes do not have 
randomness and high correlation, there is low orthogonality and inefficiency in peak capacity [24].

 
Figure 4. Theoretical representation of orthogonality in multidimensional liquid chromatography. A) low correlation and high 
orthogonality. B) high correlation and low orthogonality. [Reprinted (adapted) with permission from [24] François, I.; Sandra, K.; 
Sandra, P. Anal. Chim. Acta, 2009, 641 (1-2), pp 14-31 (https://doi.org/10.1016/j.aca.2009.03.041). Copyright© (2021), Elsevier.]

In 1995, J.C. Giddings proposed that the theoretical peak capacity of multidimensional chromatography 
is the multiple products of the peak capacities of each separation dimension. Thus, when it is combining 
the orthogonal LC modes of the peak capacity of n1 = 60 and n2 = 100, the result is an nc of 6000, according 
to Equation 3 [27].
	  ... 	 Equation 3

Where nc is the total peak capacity, and n1, n2, and nn are the peak capacities of each chromatographic 
dimension. Therefore, the peak capacity depends on the orthogonality of the separation dimensions. If 
the selectivity of the separation modes is not entirely orthogonal (different), the maximum attainable peak 
capacity is less than expected.

Braz. J. Anal. Chem., 2021, 8 (31) pp 51-73.
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Setup in multidimensional liquid chromatography
The technique can have two types of configurations: off-line or online. The off-line setup is based on collecting 

fractions from 1D and the injection of fractions into 2D. The online mode performs the direct transfer of the 
eluent fractions from the first dimension to the second dimension, without interruption in the flow of the mobile 
phase, usually using switching valves, that can be named column-switching (Figure 5A and B) [23,28].

The off-line setup offers greater instrumental simplicity and flexibility when the mobile phases between 
the dimensions are different since the fractions can be: diluted, concentrated, or dissolved in appropriate 
solvents. The disadvantages are a higher risk of loss and contamination of the sample due to manipulation 
and difficulty in automating the system, resulting in longer analysis times [19,28].

In online mode, sample handling and analysis time are reduced, which helps avoiding dead volumes, 
sample losses, and analyst errors. However, this technique has a strict requirement in the choice of 
solvents for the mobile phase because they must be compatible in both dimensions; otherwise, there is a 
need for a trap column to clean the fractions and change the eluent before the analytes are transferred to 
the second column. Consequently, it infers increasing in the time of analysis [23,28].

The proteomics community has divided online approaches into column-switching and multidimensional 
protein identification technology (MudPIT) systems (Figure 5C). MudPIT is a multidimensional 
chromatography setup proposed by Yates Group that uses a strong cationic exchange column (SCX) in 
1D coupled directly to reversed-phase in 2D. Thus, the SCX column and the RP column are combined 
in one fused silica capillary with a glass needle directly connected to the mass spectrometer and act as 
an electrospray emitter due to voltage application in the bottom of the column (Figure 5C). For that, the 
sample is trapped first in the SCX phase. Different fractions of peptides are eluted from the SCX onto the 
RP phase by increasing salt steps. After the salt step, the peptides are eluted from the RP phase into the 
mass spectrometer using an acetonitrile gradient (Figure 5C and D). MudPIT has the limitation to clogged 
easily into glass needle tip from column interface to MS [29].

Figure 5. Different instrumental modes for two-dimensional liquid chromatography separations using SCX and RP as stationary 
phases. A) Off-line setup the sample is first separated by SCX, and fractions are collected by the handle or automatized. B) Online 
column switching setup. The sample is first loaded onto the SCX column and eluted stepwise onto the trap column. The sample is 
desalted and subsequently eluted onto the 2D, the analytical RP column followed by MS/MS analysis. C) MudPIT approach with 
SCX and RP stationary phases packed in one capillary also has the function of an electrospray tip for direct MS/MS analysis. In the 
triphasic setup, a different RP phase is packed before the SCX and functions as a trap for desalting the sample before SCX–RP-
MS/MS. D) Typical multidimensional separation of a MudPIT-MS/MS analysis. Each color indicates the RP separation after one 
salt step. [Reprinted with permission from [29] Palma, S. D.; Hennrich, M. L.; Heck, A. J. R.; Mohammed, S. J. Proteomics, 2012, 
75, pp 3791-3813 (https://doi.org/10.1016/j.jprot.2012.04.033). Copyright© (2021), Elsevier.]
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The abbreviation LC-LC means that only relevant and properly chosen parts of the separation made 
in 1D are injected into 2D, and the rest of the eluate proceeds for disposal, which is linked to interferents 
or compounds that contribute to the matrix effect. Thus, LC-LC is often used when a greater resolution is 
required to examine a small segment of a particular peak from 1D, from a complex sample. In this case, 
the nomenclature of the technique is heart-cut, where only part(s) of interest(s) of separation in 1D is 
directed to 2D [23,28].

Another technique is named comprehensive multidimensional liquid chromatography. Here all fractions 
separated in 1D are submitted to 2D producing the analysis of all compounds in the sample, and 
consequently, all are of interest to the analyst. Generally, it has been used to mixtures with more than a 
thousand compounds where the goal is to characterize the sample completely. Thus, it has been used for 
studies on omics sciences, such as i) proteomics, ii) metabolomics, iii) lipidomics, etc. 

The difficulties in the development of this technique are related to i) the compatibility of the mobile 
phases of the first dimension with the second dimension, ii) the resolution obtained in 1D should not be 
lost in the elution process for 2D, and iii) the size connections and columns should be planned to suitable 
elution, sensibility, separation in the 2D, mainly in online mode, due to the amount of fraction eluted be 
direct from 1D to 2D [23,24,26].

In terms of nomenclature/abbreviation when it refers to the heart-cut modality, the abbreviation is LC-
LC. When it comes to the comprehensive modality, the abbreviation is LC×LC. The multiplication symbol 
means the products multiple of the peak capacity between 1D and 2D, which represents the separation 
area that has been usually represented as a rectangle [23,26,28].

Currently, several works have been related in the literature to LC×LC and LC-LC modes for proteomics, 
with most of them based on SCX columns as the first dimension and RP column as the second dimension. 
Other growing strategies include RP columns in both the dimensions, where the mobile phase in the 
first dimension has high pH and the mobile phase in the second dimension has low pH. A third approach 
refers to the use of HILIC (hydrophilic interaction chromatography) columns as the first dimension and RP 
column as the second chromatographic dimension [30,31].

The high orthogonality of these methods: i) SCX×RP or SCX-RP; ii) RP×RP or RP-RP, and iii) HILIC×RP 
or HILIC-RP comes from different selectivity that each dimension can offer over partition phenomena. For 
example, the method i) have electrostatic interaction vs hydrophobic interaction or nonpolar interaction; in 
ii) conformational structure of biomolecules change in different pH between chromatographic dimensions 
generating different retention times, and iii) have polar vs nonpolar interactions, a full complementary 
and independent physical-chemistry mechanism. Some influential researchers in the field have reviewed 
substantially 2D LC modes, Table II summarizes some applications and interfaces used in 2D LC [30,31].

Table II. Summary of some applications of 2D-LC to the proteomics analysis
Sample Separation Application Hyphenation Detection Ref.

Peptides Affinity×RP Glycated proteins Online 
(RP trap) Orbitrap-MS [32]

Peptides SCX×RP Proteins alterations in colon cancer Offline MS [33]

Peptides RP×RP Proteome analysis of the methane producing archaeon 
Methanosarcina mazei strain Go1 cytosolic Offline Q Exactive [34]

Peptides RP×RP Glycopeptides from Monoclonal Antibody Offline Orbitrap [35]

Peptides

RP×RP
HILIC×RP
SCX×RP
Other 13 
LC×LC 
methods

Yeast cell lysate Offline UV and Triple 
TOF [36]

Braz. J. Anal. Chem., 2021, 8 (31) pp 51-73.
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Sample Separation Application Hyphenation Detection Ref.

Peptides
SCX×RP
RP×RP

Model of the brain of monkeys to study the 
characterization of molecular mechanisms of induced 
cerebral ischemia

Online
(SCX and RP 
trap)

TripleTOF [37]

Peptides SCX×RP Proteins in the jejunum tissues of enterotoxigenic 
Escherichia coli-infected piglets Online Q Exactive [38]

Peptides SCX×RP
RP×RP

Characterization and quantitative proteomics mapping 
in cerebral infarcts

Online
(SCX and RP 
trap)

Q-TOF and 
tripleTOF [39]

Peptides SCX×RP Proteome analysis of S. cerevisiae Online
(RP trap) FTICR-MS [40]

Peptides
SCX × RP
RP × RP
HILIC × RP

Characterization of therapeutic monoclonal antibodies Online
(valve)

UV and QTOF-
MS [41]

Peptides RP×RP Detection and quantification of host-cell proteins in 
biotherapeutic drug substance

Online 
(valve)

Ion mobility and 
QTOF-MS [42]

Protein RP×RP E. coli cell lysate Online
(RP trap) LTQ-Orbitrap [43]

Protein SEC-RP Endogenous membrane proteins Offline ETD Q-TOF [44]

Protein Affinity×RP Analysis of glycated albumin
Online
(RP trap 
column)

LTQ-Orbitrap [45]

Protein SEC-RP Determination of degradants and small molecules in 
antibody-drug conjugate (ADC) solutions

Online 
(loop trap) UV and MS [46]

Protein Mixed mode 
– RP; IEX-RP

Characterization of polysorbate surfactants in 
monoclonal antibody drug formulation

Online 
(loop trap) CAD and MS [47]

Protein SAX × RP Quantification of Gly m 4 protein in soybean Online 
(RP trap) UV and MS [48]

Protein SEC – 
RP(µchip)

Characterization of monoclonal antibody degradation 
products Offline Orbitrap-MS [49]

Protein IEX – RP
SEC – RP Characterization of monoclonal antibody variants

Online 
(RP trap and 
valves)

QTOF-MS [50]

An overview over Table II infers that LC-LC-MS/MS method has been more used for monoclonal 
antibody or biomarker characterization, whereas LC×LC-MS/MS have been extensively applied for 
proteomes characterization. However, it does not seem to be a general rule for application choice, that 
can be inferred depending on the subject of study of the scientist. Besides, HILIC×RP has more challenges 
in the hyphenation because the mobile phase between dimensions is strictly incompatible. It is mean that 
loss of chromatography resolution between dimensions is easily achieved. For that, it has been used 
offline mode or sophisticated configuration using trap column, valves, or loops.

Tandem mass spectrometry
According to the theories of electromagnetism, charged particles (ions) in motion (accelerated) generate 

an electromagnetic field, the action of an external field, the use of radiofrequency (RF), and Direct Current 
(DC) or Alternating Current (AC) over the ions, allows their control. Consequently, particles subjected to 
acceleration and deflection (force) from the external electromagnetic field enable the physical phenomenon 
to measure the m/z of the ions. That means the type of force applied and adequate equation obtain a solution 
in m/z. Figure 6 shows an introductory block diagram for a typical tandem mass spectrometry instrument 

Table II. Summary of some applications of 2D-LC to the proteomics analysis (Continuation)
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for proteomics analysis. The hardware of the mass spectrometers have been changed continuously for the 
question of improvement of the instrument and probably by the strategy of the market of the companies. 

Figure 6. Block diagram for tandem mass spectrometer in proteomics analysis. After multidimensional 
liquid chromatography (LC×LC), the sample is injected into the ion source of mass spectrometry by 
an electrospray ion source. The Mass Analyzer I filter/separate more intense peaks from a mass 
range previously selected. Collision cells activate the molecules for their fragmentation. The Mass 
Analyzer II filter/separate more intense peaks from precursor ions fragmented. After detection, the 
data is processed as several Analytical Information for protein characterization, where MS1 is the 
masses from Analyzer I, and MS2 are the masses from fragments of the precursor ion.

Proteomics has driven the advance of mass spectrometry analysis and instrumentation. The mass 
accuracy combined with the resolution are the most important figures of merit that infer greater detection of 
species due to the discrimination between masses (m) for values < 1 ppm (10–6 m/Δm for suitable IUPAC 
definition). Instrumentation have undergone considerable advances in sensitivity, speed of acquisition, 
and quality to biomolecule fragmentation in recent years. The researchers have focused on developing 
i) sources of micro and nanoflow ionization to increase the sensibility, ii) innovations in mass analyzer 
shapes to increase resolution, iii) including their different hybrid configurations. That means using two 
mass analyzers in sequence; iv) optical devices to control the focus or deflection of the ion beams in the 
vacuum, using a suitable electromagnetic field to increase the sensibility, and v) new peptide and protein 
fragmentation techniques to improve identification [11,19].

The separation properties to ions submitted by an electromagnetic field and, differentiated by their mass 
charge ratio (m/z), make mass spectrometry a high-speed technique compared to chromatography since 
separation is governed by physicochemical separation of partition. However, chromatography remains the 
most efficient and cheapest technique in terms of separation power for the solution of complex samples 
for > 1000 analytes [18,26].

In general, proteins and peptides are polar, non-volatile, and thermally unstable. Because of these 
properties, one of the most significant scientific advances in the area was the introduction of soft ionization 
methods, without the random and abrupt degradation of the biomolecule, such as electrospray ionization 
(ESI) [51], matrix-assisted laser desorption ionization (MALDI) [52] and, recently, ionization by desorption 
and electrospray (DESI) [53]. In contrast to MALDI and DESI, the ESI ionization source produces ions in 
solution, an aspect that makes it compatible with liquid chromatography. In terms of sensitivity for mass 
spectrometry, a substantial gain was creating nanoelectrospray (nano-ESI) [54].

Braz. J. Anal. Chem., 2021, 8 (31) pp 51-73.



62

The nano-ESI do not use gases (N2 or He) for sample desolvation because it is a low flow rate technique 
(less than 20 nL min−1). This low flow allows to shape of microdroplets with a larger surface area and a 
smaller drop radius, contributing to the Coulombic explosion and consequent increase of sensitivity due to 
the lower dilution of the analytes in the mobile phase. 

The usual nanoflow of the coupling of the LC to nano-ESI is 250 nL min–1. There are two factors that 
essentially need to work in together: i) chromatographic efficiency according to the parameters of the van 
Deemter equation in the nano chromatographic column (75 µm i.d.), and ii) efficient aerosol formation of the 
biomolecules into the ionized state (ionization), to reach the vacuum chamber of the mass spectrometer. 
It has been shown that in the ESI process non-covalent bonds (biologists’ nomenclature) or molecular 
interactions (chemists’ nomenclature) between biomolecules are kept. The versatility of the technique 
allows the ionization and infusion of protein complexes in the mass spectrometer. Thus, it is possible to 
analyze the quaternary structure of small proteins. That infers studies on the protein conformations in their 
native shapes [10,11].

In the mass analyzer, the physical phenomenon to measure the m/z of the ions occurs (Figure 6). 
Currently, the analyzers used in proteomics or other complex bioanalytical demands focus on couple 
hybrid systems between i) quadrupole (Q), ii) time of flight (TOF), iii) linear ion trap (LIT), iv) Orbitrap, and 
v) Fourier Transform Ion Cyclotron Resonance (FTICR). Hybrid systems in mass spectrometry obtain 
better analytical figures of merits for detecting ions from a complex mixture. The hybrid configuration 
increases the possibilities to control, filter, and separate the ions; it allows fragmentation of molecules, 
which increases information for the characterization of unknown chemical species. 

Among all mass analyzers, FTICR offers the highest resolution. However, the Orbitrap analyzer has also 
a high resolution and delivers best results in sequential mass spectra (MS/MS), with lower maintenance 
costs. Orbitrap and FTICR use the Fourier transform signal processing to convert the time domain signal 
from the frequency of the ionic current into m/z spectra [8,11,19].

The hybrid configuration of the ion trap coupled to Orbitrap has been the tool of choice for biomolecular 
studies from samples of high complexity, mainly the studies driven by shotgun and bottom-up proteomics. 
The ion trap is considered a mass analyzer of high yield in proteomics. It has significant versatility because 
i) has high capacity to store ions, ii) provides enrichment of sensitivity, iii) shows excellent range of mass 
selection, iv) scans at high speed, v) features efficient service cycle (high-duty cycle), vi) moderate mass 
resolution (full width at half height - FWHH - 2000); vii) mass accuracy around 100 ppm (1×10−4 m/Δm), 
viii) is robust, and ix) has simple architecture, what favors miniaturization [8,55].

The linear trap quadrupole (LTQ) is made of four hyperbolic rods positioned symmetrically on a 4 
mm radius between them. Each rod is divided into three long axial sections 12, 37, and 12 mm (Figure 
7A). In each section has a discrete DC level. The geometry was first simulated by the Simion technique, 
predicting the possibility of confining ions along the axis of the central section of the device, avoiding 
possible distortions of the electromagnetic field. The ability of this configuration to avoid distortion of the 
field is shown in the simulation of Figure 7B [55].

Although the routine operation of the LTQ requires further details in the explanation, the physical 
phenomenon to confinement of ion occurs due to the potential rotation applied in the central section, 
together with the application of discrete DC in each segment of the analyzer, as described by Figure 7C. 
Thus, when the positive ions are attracted to the opposing poles, in a short time, the negative poles are 
converted into positive poles causing the repulsion of the positive ions. The temporal and spatial change 
from positive to negative potential generates an oscillating, reproducible, and symmetrical potential surface 
(Figure 7D), causing the capture or storage of ions in vacuum.

The Importance and Challenges for Analytical Chemistry in Proteomics Analysis
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Figure 7. Summary of the operation of the linear trap quadrupole mass analyzer. A) The basic 
characteristic of the analyzer; B) Representation of the Simion simulation of the excitation resonance 
of the electromagnetic field without distortion; C) The radiofrequency (RF) applied varies depending 
on the time and potential. In a symmetrical and synchronized way, the positive potential at a given 
moment is converted into a negative potential at a second moment. The final display resembles a 
circular signal/potential rotation. [Reprinted (adapted) with permission from reference [55] Schwartz, 
J. C.; Senko, M. W.; Syka, J. E. P. J. Am. Soc. Mass Spectrom., 2002, 13, pp 659-669 (https://
doi.org/10.1016/S1044-0305(02)00384-7). Copyright© (2021) American Chemical Society. Further 
permission related to the material excerpted should be directed to the ACS]. D) An instantaneous 
moment of the field generated by the quadrupole or surface of the potential, as a function of an 
applied RF. The orange circle represents an ion on the surface of the potential. [Reprinted (adapted) 
with permission from reference [56] March, R. E. Encyclopedia of Analytical Chemistry, 2012, p 4 
(https://doi.org/10.1002/9780470027318.a6015.pub2). Copyright© (2021) John Wiley & Sons, Ltd.]

The origin of the Orbitrap analyzer began through the proof concept that a central spindle-like electrode 
could generate a purely harmonic potential in the direction of the z-axis. This was first devised by Kingdon 
in 1923, proven by Knight in 1981 by the Simion simulation, as shown in Figure 8A and applied by Makarov 
in 2000, as Kingdon’s ideal trap, which would later be called Orbitrap [19,57].

The Orbitrap analyzer, also considered an ion trap, like the FTICR and the LIT, is configurated of a 
barrel-like anode electrode in a coaxial shape (external) that involves the cathode electrode in the shape 
of a spindle-like (central). The geometry confers a harmonic potential, ion oscillation stability, and purely 
governed by the electrostatic field (Figure 8B). The electrical voltage is applied axially between the central 
electrode, providing the stored ions with a stable orbital path and oscillation in the axial direction between 
the electrodes. Therefore, Orbitrap uses the oscillation frequency of the confined ions along the central 
electrode to determine its m/z ratio. These properties of the Orbitrap are the origin for the high resolution 
of the equipment. In contrast, the scanning speed of the m/z is considered moderate. As a rule, the use of 
high resolution affects the scanning speed and vice versa [19,57].

Braz. J. Anal. Chem., 2021, 8 (31) pp 51-73.

A B

C D

https://doi.org/10.1002/9780470027318.a6015.pub2


64

 
Figure 8. Summary of the operation of the Orbitrap mass analyzer. A) The Simion graphs of equipotential lines for ideal parameters 
of the Kingdon trap. The numbers refer to the potentials of the contour curves. Check that the central contours resemble the 
trajectory of the ions in Figure B. [Reprinted with permission from reference [19] Perry, R. H.; Cooks, R. G.; Noll, R. J. Mass 
Spectrom. Rev., 2008, 27, pp 661-699 (https://doi.org/10.1002/mas.20186). Copyright© (2021) John Wiley & Sons.] B) A sectional 
view of the Orbitrap analyzer. Through the C-trap the ions are injected into the Orbitrap at a point where z = 0 and perpendicular 
to the z-axis, where axial radiofrequency oscillations of the ions begin, without the need for additional excitation. The red cylinder 
is the area of the ions’ trajectory. [Reprinted with permission from reference [58] Zubarev, R. A.; Makarov, A. Anal. Chem., 2013, 
85, pp 5288-5296 (https://doi.org/10.1021/ac4001223). Copyright© (2013) American Chemical Society.]

The challenges to mass spectrometry analyzers concern intact protein analysis. So, scientists have 
invested in developing new FTICR cell harmonization, high-field Orbitrap geometries, and advances in 
signal processing. For that, the base unit resolution has recently been extended to proteins with masses 
of 150 kDa, using the FTICR or Orbitrap analyzers [59]. Due to the higher resolution of FTICR, it has been 
the analyzer of choice for top-down proteomics. However, the hybrid system LTQ-Orbitrap has proved to 
be a successful strategy. 

In general terms, the quality of ion fragmentation determines the successful identification of peptides 
and proteins. Fragmentation in mass spectrometry activates the molecule, with the purpose to produce 
biomolecular “fingerprints” of a diverse set of molecules. The goal of all activation methods is essentially 
the same: to deposit energy in the ions to cause cleavages in chemical bonds reproducibly and to produce 
interpretable ion fragments, which means to reveal structural information or the sequence of the molecule 
of interest [60].

The fragmentation techniques used in proteomics are based on i) collision energy transfer (collision-
induced dissociation - CID, high energy collision dissociation - HCD, electron capture dissociation – ECD, 
and electron transfer dissociation - ETD, surface-induced dissociation - SID; ion-ion reactions) or ii) photon-
based (infrared multiphoton dissociation - IRMPD and Ultraviolet photodissociation - UVPD) [7,60].

Fragmentation methods by collision energy transfer are more useful for peptides with lower molecular 
weight and less efficient for peptides with high molecular weight and intact proteins or species containing 
labile PTMs, such as phosphopeptides.

The electron-based fragmentation methods generate fragmentation patterns of larger molecules that 
favor the interpretation of a species with labile PTMs, such as phosphorylation and glycosylation. Thus, the 
fragmentations type ECD and ETD have efficient results in the characterization of intact proteins [11,59].

SID is the alternative that provides the highest energy to gas-phase collision methods, in which the ions 
are activated and fragmented after colliding with a surface (which works how a large target). In addition 
to its ability to generate rich fragmentation patterns, for many classes of ions, SID has also been used 
to characterize the structure of protein complexes due to its high energy transfer. In photodissociation 
techniques, ions accumulate energy through the absorption of one or more photons. Consequently, the 
fragmentation of the ionic species is obtained [60].
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In particular, two fragmentation methods have contributed considerably to the advances in top-
down proteomics, ETD, and ultraviolet photodissociation UVPD. Currently, they are the most efficient 
fragmentation methods for intact proteins, especially when used in combination [10,59].

CID/CAD collision-based methods are the most common fragmentation techniques in proteomics. 
These generally provide fragmentation at the amide bond of the peptide/protein. Thus, ions type b and y- 
are obtained. The HCD method provides fragmentations that result in the formation of ions of type a- and 
x-. Electron-based methods, such as ECD and ETD, generally result in the cleavage of the N-C bond and 
produce fragments of ions type c- and z- [7,11,59].

The analytical challenges of proteomics
Although there have been considerable advances in techniques for the separation and identification 

of biomolecules, the analysis of intact proteins from a complex mixture remains a challenge to analytical 
chemistry because of the extreme complexity of large-sized proteins, post-translational modifications, 
and physicochemical properties. Proteins have all possibilities of chemical interactions, in terms of 
intramolecular and intermolecular. That infers analyzes with low reproducibility in the analytical methods 
and techniques. Besides, proteins have a high dynamic range of protein expression, spanning many 
orders of magnitude (>1010). Additionally, proteins have conformational heterogeneity resulting from 
post-translational modifications (PTMs), besides expressed in a diversity of species in qualitative and 
quantitative terms. Therefore, our ability to understand a proteome through the analysis of intact proteins 
is currently limited [59].

Analytical chemistry has advanced significantly for the analysis of small molecules. Because of the less 
complexity, the chemical behavior of small molecules in analytical separation and detection systems is more 
conclusive for successful analysis. Certainly, shotgun and bottom-up proteomics have gained knowledge of 
analytical techniques for the analysis of small molecules. Consequently, the shotgun has provided greater 
characterization of the proteome emerging to expressive numbers in identifying proteins, never reported 
before. However, the analysis of a proteome from a complex mixture of several proteins digested into 
peptides increases the dependence on the accuracy of bioinformatics tools. The bioinformatics strategy 
alone does not have great chances to succeed in terms of the typical analytical figures of merits. That 
infers that the sequence of peptides into proteins in some cases brings certain bias. The main drawback 
is that peptides can assume a math property of combinatory analysis in the sequencing step. That infers 
some peptides can be sequenced the wrong way to some proteins, consequentially increase the number 
of identification of proteins that, in reality, does not exist. Thus, shotgun proteomics is a relative technique 
for protein identification, as well as for quantification. Also, protein coverage is desired to reach 100%, 
a challenging aspect for liquid chromatography and high-resolution mass spectrometry because of the 
misunderstood loss of peptides in the analysis process [13,61].

The high orthogonality and selectivity of LC×LC have an essential influence on the proteomics results, 
mainly due to the decrease in sample complexity in the separation, providing a better detection and 
biomolecular characterization in MS/MS. However, LC×LC is not able to separate all compounds from 
proteomes. Therefore, two or more compounds with similar retention time and molar mass (isobarics) 
can be considered the same precursor ion in the m/z range, and they are co-sequenced together, mainly 
in shotgun proteomics. This drawback is named “chimera” spectra. Thus, the results from the isolation 
and simultaneous fragmentation of two or more different molecular ions reduce the score values and 
the number of identifications of bioinformatics tools due to unidentifiable fragment ions derived from 
contaminating parent ions. 

Bioinformatics scientists have developed alternatives to lessen the effect chimera through the statistical 
treatment of mass spectra. Additionally, it becomes essential to develop high-resolution mass spectrometers 
or strategies such as ion mobility-MS/MS, to increase the rate of ion isolation and consequent improvement 
in the detection of MS.
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Another common problem in mass spectrometer applications is ionic suppression because some 
peptides or proteins can ionize more efficiently than others, causing that other biomolecules have an 
inefficient ionization. Thus, the first one can make ionic suppression phenomena over the second one that 
affects the sensibility of analysis implicating in not identifying bioinformatics tools. 

Yet, the main challenges continue to be top-down and native mass spectrometry proteomics because 
the detection limit and sensitivity of the mass spectrometer for intact proteins are much lower than for 
peptides. In any type of MS instrument, the sensitivity decreases drastically with the increase of mass 
weight. Today, it is still relatively difficult to analyze intact proteins more massive than 70 kDa. Moreover, 
as the molecular mass of the protein increases, the tertiary structure of proteins becomes more difficult to 
disrupt, which thereby limits the MS/MS fragmentation efficiency of intact proteins. Thus, most of the top-
down applications focused on proteins less than 50 kDa, and there are very few applications to date on 
larger proteins (>100 kDa) [56].

In any proteomic technique (bottom-up, middle-down, or top-down), the ideal condition to increase 
sensitivity and to achieve the lowest limit detection or quantification for 2D-LC are basically: i) the highest 
orthogonality of separation; ii) gradient using a nano-flow scale for less amount of mobile phase (that infers 
lower dilution of each chromatography peak and leads to great Coulombic explosion in the MS); iii) capillary 
chromatography columns, usually 75 µm of inner diameter and 3 µm of size particle; iv) reduced plate 
height following van Deemter equation, usually 250 nL min-1. Likewise, in mass spectrometry provides: i) 
efficient ionization for the most suitable gas-phase state of all molecular ions to enter in the electromagnet 
field driving to the vacuum chamber of MS; ii) a suitable interval of time storage ions in the analyzers with 
high velocity to analysis and fragmentation in the sequent analyzer; iii) fragmentation quality that depends 
on technique and type of biomolecule analyzed; iv) high resolution, and v) high sensitivity. Usually, these 
two last parameters are the intrinsic conditions of the mass analyzer type of choice, which means how 
much the analyzer differentiates the background noise from the analytical signal. Usually, they are linked 
to an electromagnetic theory from physics, such as summarized in Figures 7 and 8.

Mathematical modeling and chemometrics tools to improve proteomics analysis
Mathematical modeling is based on the mathematical model concept to representing a complex 

phenomenon or incomprehensible subject. Therefore, it brings ways simpler and more palpable to 
understand complex data using simulations. The construction of a model requires multidisciplinary 
knowledge and the ability to make sophisticated guesses when getting information, testing, etc. The steps 
of mathematical modeling and troubleshooting can be summarized in Figure 9 [62].

Once the mathematical model has been built, it can be applied for studying the modeled phenomenon. 
The most important is to check if the model is coherent to represent genuinely the phenomena that occur 
in the problem investigated, for that some adjust in the equation(s), proving tests, and validations must 
be evaluated. If the mathematical model is robust, it can be used to investigated similar problems. In 
chemistry, simulation can bring faster and cheaper solutions, which means that it is unnecessary to do 
many experiments to observe phenomena because simulation can be used as the first step to refine the 
experiments [62].

The Importance and Challenges for Analytical Chemistry in Proteomics Analysis
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Figure 9. The process of mathematical modeling. First, we must identify the problem that is trying to solve by 
modeling. Next, it is necessary to understand which building blocks (equations) have to be included in the model. At 
this step, we define the most critical variables and quantities of them, and we also think of any relevant background 
assumptions, simplifications, and so forth.

Chemometrics is a science-based tool that uses mathematical concepts to simplify complex chemical 
data or optimizations. For example, using the Design of Experiments (DoE), an input data analysis, the 
most used chemometrics tool, it is possible to evaluate several parameters to find two or three parameters 
most significant on an analytical method to be optimized. Although DoE is very used in the analytical 
chemistry field in proteomics it is very incipient with few papers published [63,64]. 

Another chemometric tool used, in this case, in output data, to proteomics is principal components 
analysis (PCA). It is useful to simplify a complex data analysis to bring relevant information to interpretation. 
PCA uses the concept of dimensionality reduction by projecting of new axis (PCs). For example, in a 
proteomics analysis with more than 1,000 proteins for each sample analyzed, PCA allows us to plot 2D or 
3D graphs that separate or put together sample groups. Thus, separate groups have different chemical 
information, and groups in the set have similar chemical information. Without this strategy, it is practically 
impossible to understand the most important chemical information of different samples analyzed. Another 
very well used chemometric tool used in proteomics is Hierarchical Cluster Analysis (HCA). Here different 
samples form clusters until all of them in the dataset are linked together in a hierarchical tree [65–67].

Other useful chemometrics tools can be used in proteomics analysis include multivariate calibration, 
Kth Nearest Neighbor (k-NN), Soft Independent Modeling of Class Analogy (SIMCA), Linear Discriminant 
Analysis (LDA), Partial Least Squares – Discriminant Analysis (PLS-DA), Partial Least Squares – 
Regression (PLS-R), Orthogonal Partial Least Squares – Discriminant Analysis (OPLS-DA), Parallel 
Factor Analysis (PARAFAC), PARAFAC 2, and Artificial Neural Networks (ANN). Some of these tools have 
been applied currently in proteomics analysis in food and biological questions. However, application of 
chemometrics tools in proteomics is still incipient. Although chemometrics is an excellent strategy to obtain 
relevant information from complex samples, it must be used with caution because, before its application, a 
study on the mathematical and statistical treatment must be considered. In general terms, the consensus 
on the previous information of the sample must have a link to the chemical information the chemometrics 
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has provided. The detailed description of all of these useful tools would demand a complementary review, 
which is not the goal on this one. However, Table III summarizes the main applications of chemometrics 
tools in proteomics data analysis [67–69].

Table III. Summary of chemometrics studies applied in proteomics data analysis

Field Sample
Chemometrics tools used

Ref.
DoE PCA HCA PLS-DA LDA PLS-R OPLS-DA ANN

Food Chemistry Meat  [70]

Food Chemistry Avocados       [71]

Food Chemistry Meat    [72]

Food Chemistry Cucumber    [73]

Food Chemistry Meat   [74]

Food Chemistry Shrimp   [75]

Food Chemistry Biactive peptides  [76]

Analytical Chemistry Mix of proteins  [77]

Analytical Chemistry Mix of proteins   [78]

Analytical Chemistry Saccharomyces 
cerevisiae  [64]

Analytical Chemistry Saccharomyces 
cerevisiae  [63]

Health Cutaneous 
Leishmaniasis  [79]

Health Ovarian cancer  [80]

In the last years, a chemometric strategy based on DoE has been introduced, named as Chemical 
Mathematical Model to maximize protein sequence coverage for shotgun proteomics. Thus, two significant 
parameters were statistically evaluated from the whole LC×LC-MS/MS platform [81,82]. These parameters 
show more representative to increase shotgun proteomics coverage. Besides, the evidence shows 
that performance is strongly linked to the chemical nature of the peptides, for example, hydrophobicity. 
Thus, the origin of the chemical approach of the model is revelated. Figure 10 shows the behavior of the 
surface of response in different methods to improve identification of proteoforms in shotgun and bottom-
up proteomics analysis, once it allows greater coverage of proteins. Note that different instrumental 
conditions are necessary to detect different hydrophobicity of peptides. Lastly, an optimization condition 
from a complex system (LC×LC-MS/MS) can be amenable to simplification into mathematical models due 
to Pareto Principle [81,82].
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Figure 10. Two Chemical Mathematical Model to maximize protein sequence coverage for shotgun proteomics. A) Digested 
bovine serum albumin (BSA) sample to evaluate the optimal conditions of SCX-RP-Q-ToF. B) Digested yeast proteins to evaluate 
the optimal conditions of MudPIT-LTQ-Orbitrap. The x-axis is the significant parameter from 2D-LC and the y-axis is the significant 
parameter from ESI-MS/MS. Areas in red means larger peptides identifications through evaluation of three responses i) Coverage 
of Proteins ii) Score, and iii) the number of peptides. [Reprinted (adapted) with permission from reference [82] Batiston, W. P. 
Exploring the fundamentals of liquid chromatography and mass spectrometry for integration between proteomics, microfluidics, 
and chemometrics. Doctoral thesis, 2020. Sao Carlos Institute of Chemistry, University of Sao Paulo, Sao Carlos, SP, Brazil 
(https://doi.org/10.11606/T.75.2020.tde-27082020-142027).]

Finally, bioinformatics has emerged as an imperative tool for proteomics analysis and is essential in 
any proteomics technique (bottom-up, middle-down, or top-down). The most important subject of study 
of bioinformatics is the algorithm. An algorithm is a finite sequence from executable actions that gets a 
solution for a specific problem. As the algorithm are precise, unambiguous, mechanical, efficient, and 
correct procedures it is important to a deep understanding of the figures of merit in analytical chemistry 
for proteomics. Among the main outcomes from bioinformatics, we can benefit from reproducible analysis, 
precision, accuracy, chemical behaviors of the biomolecule and its fragmentation pattern, as well as 
understanding the random or systematic errors. Because an algorithm only can interpret a pattern or well-
defined behavior, a proteomic analysis with significant random errors could infer some bias in the results 
from algorithm interpretation. 

CONCLUSIONS
In terms of theoretical perspectives on the top-down and native proteomics, they would have conditions 

suitable to identify with accuracy proteins. However, there are tremendous analytical challenges to overcome 
the direct identification of proteins with >70 kDa to mass spectrometry. One of the main drawbacks sounds 
inevitable; the structural diversity of proteins when submitted to analytical methods drive different chemical 
structures under the same condition of analysis, what substantially decreases the reproducibility of the 
methods. Besides the expressive number of species to the identification and the challenges to get a good 
fragmentation in mass spectrometry for biomolecules above 50 kDa. Although of the several limitations 
of peptides analysis, consequently driven to relative identification of proteins. We can infer that shotgun 
and bottom-up proteomics must persist in studying the massive scale of analysis from proteomes using 
LC×LC-MS/MS, because of great simplicity and very well-established analysis ways. A light at the end 
of the tunnel for overcoming the drawbacks to separations limitations in the intact proteins could be the 
exploration of new stationary phases for high resolution and sensitivity in nanoflow liquid chromatography, 
such as monolithic columns or open tubular columns. Besides, in mass spectrometry, the understanding 
of new strategies and sophisticated ion control, increases resolution, and new fragmentation modes 
could provide more evidence to improve proteomics analysis. However, the development of analytical 
instruments demands long time, elevated costs, and skilled personnel. Such bottlenecks are not interesting 
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to most of the scientific community, which can put the field in a stagnation, even if it is of high interest to 
analytical instrument companies. Smart strategies can improve analytical figures of merit in proteomics, 
like mathematical modeling, chemometrics tools, and continuous advances in bioinformatics.
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