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    Soybean (Glycine max) represents one of the most important crops in Uruguay, mostly processed for 

animal feed, while a smaller percentage is processed for human consumption. Soy foodstuffs are also a 

source of trace elements (TEs). Cu, Fe, Ni, Zn, As, Cd and Pb were determined in soybean seeds batches 

and correlations within them and with biochemical parameters (superoxide anion content, superoxide 

dismutase enzyme and viability of the analyzed seeds) were studied. Analytical determinations of Cu, Fe 

and Zn were performed by flame atomic absorption atomic spectrometry (FAAS) while As, Cd, Ni and Pb 

were determined by electrothermal atomic absorption spectrometry (ETAAS). For sample preparation, a 
-1microwave assisted digestion was carried out using diluted acid (3.5 mol L  HNO ). The concentrations of 3

 -1 -1the essential elements where in the following ranges: 12 – 24 mg kg for Cu, 60 - 125 mg kg  for Fe, 5.4 – 
-1-1 -117.9 mg kg  for Ni and 33 – 50 mg kg  for Zn. Cd and As content was < 0.2 and 0.3 mg kg  respectively, 

-1
whereas Pb exceeded slightly the admitted limit in five samples (above 0.2 mg kg ). Positive correlations 

were found for Fe:Cd:Pb (p<0.005), Cu:Fe, As:Cd:Pb and Zn:Ni (p<0.05). A novel highly significant positive 

correlation (p < 0.005) between Cd content and seed quality parameters related to seed germination was 

found. This suggests that the concentration of Cd do not produce negative effects in the development of the 

seedlings, despite this Cd and Pb levels must be monitored to guarantee food safety.

Keywords: Soybean seeds, essential trace elements in food, food safety

INTRODUCTION

     Some trace elements (TEs) are essential micronutrients for human beings. The requirement is no more 

than a few milligrams per day, but deficiencies, excesses, or imbalances in their supply from dietary sources 

can have an importantly deleterious influence. Some of the most relevant are copper (Cu), iron (Fe) and 

zinc (Zn). The essentiality of Fe and Cu resides in their capacity to participate in one-electron exchange 

reactions. Systemic Cu deficiency can generate anemia, ataxia, diminished growth, alterations in bone 

mineralization, diminished immune response and Menkes disease, among others. Moreover, it is well 

known that Fe deficiency can mainly produce anemia [1]. The primary influence of Zn in biological systems 

resides in its presence in ca. 300 enzymes. Zn has particularly relevant roles in growth, reproduction, 

immune and neuronal functions [2].

     These elements must be incorporated through the diet but nowadays, due to frequently dietary disorders, 

TEs deficiencies have become a matter of concern. In the case of Nickel (Ni), it is essential for plants and 

bacteria [3-5] but there is no evidence of the effect of Ni deficiency in humans. On the other hand, TEs 

such as arsenic (As), lead (Pb), and cadmium (Cd) are potentially harmful to human and animal health [6]. 

Humans exposed to As may develop skin lesions, neuropathy, gastrointestinal diseases, cardiovascular 

diseases, cancer, and other ailments. Exposure to Pb due to contaminated food may cause changes in the 

neurologic system, leading to loss of neurological function. Acute Cd exposure can cause stomach irritation, 
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while the long-term intake of low levels of Cd can cause kidney disease and bone fragility [7,8]. Therefore, 

regional regulations established maximum limits for As, Cd and Pb in several foodstuff for safety reasons. 

Then, it is important to monitor these TEs to ensure food safety. 
     Crops such as rice, wheat and soybeans are the basis of human diet in many countries and are widely

used in food and feed. Soybean is one of the most important crops in terms of cultivated area in Uruguay 

covering more than 60% of the total agricultural area [9]. Besides, studies on the transfer of heavy metals 

from soil to crops have shown that soybean may accumulate more potentially toxic elements than other 

crops [10]. Salazar et al. evaluated the content of Cd, Pb and Zn in agricultural soils, the transfer of these  

elements to the plant and its relation to crop quality. They found that concentration values for Pb and Cd in 

both soils and soybeans, at several sites in Argentina, were above the maximum permissible levels. This 

information alerted about the possible presence of these elements in seeds that are imported from Argentina 

to Uruguay as raw material for food as well as for planting purposes [10].

     In this work, in addition to determine the contents of TEs (four essentials and three potentially toxic) in 

soybean seeds, correlations between these contents and biochemical parameters related to oxidative 

stress such as superoxide dismutase activity, basal superoxide anion level and non-enzymatic activity, and 

seed quality (vigor and germination) were carried out [11,12]. The results are presented for the first time to 

asses' food safety and commercial and economic aspects of these crops. 

MATERIALS AND METHODS

Reagents

-1
    Commercial standard solutions 1000 mg L  of As(V), Cd, Cu, Fe, Ni, Pb and Zn provided by Merck 

(Germany) were used. Calibration solutions were prepared by dilution of the stock solution of each element, 

using 0.1% v/v nitric acid (HNO ) prepared from concentrated HNO (67% v/v) provided by Merck 3 3 

(Germany).

     Ultrapure water, ASTM Type I (18.2 MΩ cm resistivity) was obtained from a Millipore® (Brazil) Direct-Q 5 

purifier.

     All glassware remained submerged overnight in 10% v/v HNO  and after that it was rinsed exhaustively 3

with ultrapure water before use.

     Chemical matrix modifier for Cd and Pb determination were prepared from stock solutions of Pd(NO )  3 2
-1

and Mg(NO )  provided by Merck (Germany) containing 10000 and 20000 mg L  respectively. For As 3 2
-1determination a permanent modifier was prepared from a stock solution of Nb(NO )  1000 mg L  provided 3 5

by Sigma- Aldrich (Switzerland). All other reagents were of analytical reagent grade or better. 

     Reagents and solvents for the determination of biochemical parameters were commercially available 

research-grade chemicals and were used without further purification [13]. 

Analytical determinations

Trace elements

   Analytical determinations of Cu, Fe and Zn were performed by flame atomic absorption atomic 

spectrometry (FAAS) using a spectrometer Perkin Elmer AAnalyst 200 (USA) operated at the analytical 

lines of Cu (324.7 nm), Fe (248.3 nm) and Zn (213.9 nm). Photron (Australia) hollow cathode lamps were 
-1

used as recommended by the manufacturer. Flame composition was acetylene (2.5 L min ) and air (10.0 
-1L min ).

     As, Cd, Ni and Pb were determined by electrothermal atomic absorption spectrometry (ETAAS) using a 

spectrometer Thermo Scientific iCE 3500 (United Kingdom) equipped with auto-sampler module (GFS33) 

and employing Zeeman-based correction. A transversely heated graphite tube furnace module (GFS35Z), 

from Thermo Fisher Scientific, was used. Photron (Australia) hollow cathode lamps, operated at the 
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193.7 nm (As), 228.8 nm (Cd), 232.0 nm (Ni) and 283.3 nm (Pb), were used. The spectrometer was 

controlled with the commercial software SOLAAR from Thermo Scientific (United Kingdom). Integrated 

peak-area was used as signal for evaluation and quantification. All the determinations were performed 

using pyrolytically coated graphite tubes from Thermo Scientific. Argon 99.998% provided by Linde (Uruguay) 

was used as the purge and protective gas. The heating programs employed for the analytical determinations 

are showed in Table I. These conditions were optimized and reported in a previous work [14].

Table I. ETAAS optimized temperature programs for the determination of As, Cd, Ni and Pb

Stage Temperature (ºC) Ramp rate (ºC s -1) Hold time (s) 

Drying 1 100 10a,c,d/5b 30 

Drying 2b 140 15 20 

Pyrolysis 1200a/350b/1000c,d 15a/10b/150c,d 15a/0b/20c,d 

Atomization 2200a/1500b/2500c /1800d 0 3 

Cleaning 2600 0 3 

 a b c dAs, Cd, Ni, Pb

     For Cd and Pb determinations the chemical matrix modifier used was: 10 μL of solution containing 5 μg 

of Pd(NO )  and 3 μg of Mg(NO ) . For Cd two drying steps were required using conditions presented in 3 2 3 2

Table I [15]. Sample injection volume was 20 µL for both elements. For Ni determination, no chemical 

modifier was required, and sample injection volume was 30 µL.

     Since As determinations required a special procedure using a permanent modifier, graphite tubes were
-1treated with niobium, according to Machado et al. by pipetting 50 µL of a 1000 mg L  Nb(NO )  solution and 3 5

then submitting the tube to the following temperature program: [temperature/ramp time/ hold time]: drying 

(100 °C / 10 s / 60 s), atomization (2700 °C / 0 s / 5 s). The entire procedure was repeated six times (to 

obtain an amount of 300 µg of permanent modifier on the tube). Then the temperature program was as 
-1

shown in Table I. The injection volume was 30 µL. In all cases argon flow rate was 0.2 L min  [14].

Biochemical parameters

  Biochemical parameters related to oxidative stress of the batches were performed as previously 

reported by our research group as follows: a) antioxidant enzymatic systems were evaluated in a buffer 

extract determining the superoxide dismutase (SOD) activity using the method based on the inhibitory 
 effect of SOD over the reduction of nitrobluetetrazolium by the superoxide generated by the xanthine/

xanthine oxidase system; b) basal superoxide anion level was determined by a spectrophotometric method 

in the same extract as in a); c) non-enzymatic antioxidant activity was determined as 2,2-diphenyl-1-

picrylhydrazyl (DPPH) radical scavenging capacity of an ethanolic extract following the Brand-Williams 

method. A Thermo Scientific Evolution 60 spectrometer was used for spectrophotometric measures [13].

   Soybean quality analysis consists mainly in three in vitro tests: germination, vigor and viability by 

tetrazolium test. Results of these tests were provided by a Uruguayan laboratory that performs tests 

according to the International Seed Testing Association (ISTA) rules [16]. Seeds are classified as “normal” 

according to ISTA rules when germination is > 80%, considering several standard parameters of growth, 

these seeds can be sold to farmers for planting. Vigor test is performed to detect significant differences 

related to physiological quality of batches of seeds, thus complementing the information of germination 

tests. Sometimes it happens that certain batches of seeds with high percentages of germination have 

different behavior when they grow in field.
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     This is explained by the fact that seeds lose vigor before losing their ability to germinate. Viability tests 

counts percentage of viable embryos through different standard techniques [13].

Samples

    Sixteen batches of soybean seeds (Glycine max (L.) Merrill) were obtained from a local distributor 

(Agropecuaria Valdense S.R.L., Colonia, Uruguay). All batches consisted of transgenic yellow soybean 

seeds and ranged from 0.618 to 0.864 cm of diameter. Samples were dried in an oven with forced air 

circulation (70 °C) and stored at 20 °C. Before sample preparation for the different assays, seeds were 

milled to obtain the flour.

    A certified reference material (CRM) NIST-1587a of wheat flour was also analyzed, this CRM was 

considered adequate for trueness evaluation. This CRM did not inform Ni content and for As and Pb a 

concentration value is informed in the certificate but without uncertainty, thus spiked samples were also 

analyzed to complement trueness evaluation of the analytical methods. 

Sample preparation

     For trace element determinations, a microwave assisted digestion was carried out employing a microwave 
®oven (CEM, Mars 6) provided with 12 EasyPrep Plus  vessels.

     Each sample was prepared in triplicate as follows: 0.5 g of sample (flour) was accurately weighted, and 
-1 ®10.00 mL of 3.5 mol L  HNO  were added into each EasyPrep Plus  vessel. The program was: power 400-3

1800 W, 15 minutes ramp time until 200 ºC, 10 minutes hold at 200 ºC, 500 psi pressure. Reagent blanks 

were also run. 

     After digestion, TEs in samples were directly measured or when necessary a suitable dilution with 

ultrapure water was performed.
     Assays to obtain biochemical parameters were performed with soybean seeds flour without further 

treatment as previously described [13].

Correlations

     Associations between variables were determined via Pearson´s correlation analysis. Multiple linear 
®correlation and linear regression analysis were carried out using MS Excel . 

RESULTS AND DISCUSION

Trace elements determinations 
2

     For all the studied analytes, the determination coefficients (R ) for linear regression of the calibration 
-1curves were greater than 0.99 using either FAAS or ETAAS technique. Linearity (mg L ) was up to: 4.0 for 

Cu, 2.0 for Fe, 0.10 for Ni, 1.0 for Zn, 0.020 for As, 0.004 for Cd and 0.050 for Pb. 

   Detection limits were estimated for each element, according to Eurachem Guide, expressed as the 

element content corresponding to three times the standard deviation of a blank (3s; n=10) and expressed 

in the sample (dry basis). Quantification limits were estimated in the same way considering in this case 10 

times the standard deviation (10s; n=10) [17].

     A summary of the TEs content in each sample is presented in Table II, detection and quantification limits 

for each element are also shown.

Determination of As, Cd, Cu, Fe, Ni, Pb and Zn in Soybean Seeds and their 

Correlation with Relevant Biochemical Parameters to assess Food Quality
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-1Table II. Trace elements content (mg kg ) in soybean seeds

Results are expressed on dry basis as mean ± standard deviation (n=3). Cu, Fe and Zn were determined by FAAS. As, 
Cd, Ni and Pb were determined by ETAAS. LOD: Limit of detection (3s; n=10). LOQ: Limit of quantification (10s; n=10).
* Samples with germination <80%.

     The maximum limits allowed by regional regulation to consider soybean seeds a safety food are 0.2 mg 
-1 -1

kg  for Cd and Pb and 0.3 mg kg  for As [18], therefore detection limits for As, Cd and Pb were adequate 

for monitoring food safety in soybean seeds since they are much lower than the legal limits allowed for this 

food.

     Precision expressed as relative standard deviation (RSD) was in all cases lower than 10% (n=3 for each 

element in each sample replicate and n=6 for the CRM).

     Trueness was evaluated by the analysis of the CRM under the same conditions and by performing a 

spike-recovery assay over the 16 batches of soybean seeds. Recoveries for the CRM were in the range 

90-110% for Cu, Fe and Zn using FAAS and in the range 90-120% for As, Cd, Ni and Pb using ETAAS. 

     Results obtained using a CRM such us wheat flour, a very similar matrix, guarantee that the analytes are 
-1 quantitative extracted from the matrix even using diluted acid (3.5 mol L HNO ). When the flour obtained 3

from soybean seeds is spiked with a known amount of analyte, it can be ensured there are no losses 

during the analysis. Both studies guarantee the trueness of the method.

     The use of diluted acid for microwave assisted digestions was reported as an efficient procedure for 

total digestion in several complex matrices including soybean seeds [14,19]. In this work, the use of 3.5 
-1mol L  HNO  was successful. Clear solutions were obtained after the digestion process with good 3

recoveries and complying with the principles of Green Chemistry.

     The essential TEs content in soybean seeds obtained are in accordance with those reported by several 

authors in the literature [11,19-21]. The concentration of the essential elements in the analyzed samples 

Viera, I.; Machado, I.; Pistón, M.; Torre, M. H.

Samples Cu Zn Fe Ni Cd Pb As 

S01 14.9 ± 0.4 42 ± 2 99 ± 1 9.5 ± 0.5 0.027 ± 0.002 0.292 ± 0.002 0.125 ± 0.001 

S02 13.9 ± 0.3 50 ± 1 105 ± 2 12.8 ± 0.4 0.015 ± 0.001 0.218 ± 0.002 0.147 ± 0.001 

S03* 13.0 ± 0.2 35 ± 1 115 ± 1 9.4 ± 0.1 0.056 ± 0.001 0.539 ± 0.017 0.158 ± 0.006 

S04 13.2 ± 0.8 44 ± 1 82 ± 4 14.3 ± 0.3 0.014 ± 0.001 0.165 ± 0.011 0.104 ± 0.001 

S05 24 ± 3 44 ± 2 125 ± 8 13.6 ± 0.3 0.032 ± 0.001 0.416 ± 0.016 0.097 ± 0.001 

S06* 12.2 ± 0.5 42 ± 3 83 ± 1 7.4 ± 0.3 0.035 ± 0.001 0.324 ± 0.009 0.164 ± 0.002 

S07 14.5 ± 0.2 44 ± 2 77 ± 4 7.4 ± 0.2 0.011 ± 0.001 0.194 ± 0.003 0.108 ± 0.001 

S08 15.0 ± 0.3 35 ± 1 70 ± 12 9.4 ± 0.1 0.013 ± 0.002 0.112 ± 0.008 0.151 ± 0.001 

S09 12.5 ± 0.2 39 ± 1 67 ± 4 9.2 ± 0.2 0.014 ± 0.002 0.137 ± 0.010 0.060 ± 0.004 

S10 14.2 ± 0.1 41 ± 2 83 ± 6 10.9 ± 0.2 0.013 ± 0.002 0.173 ± 0.011 0.144 ± 0.001 

S11 14.8 ± 0.7 48 ± 3 81 ± 3 10.7 ± 0.1 0.015 ± 0.001 0.123 ± 0.009 0.092 ± 0.003 

S12 14.0 ± 0.1 43 ± 1 61 ± 1 17.9 ± 0.1 0.013 ± 0.001 0.136 ± 0.004 0.111 ± 0.003 

S13 17 ± 2 41 ± 1 52 ± 7 7.7 ± 0.2 0.011 ± 0.001 0.178 ± 0.009 0.106 ± 0.002 

S14 14.5 ± 0.3 44 ± 2 70 ± 2 8.1 ± 0.1 ˂ L O D  0.080 ± 0.005 0.107 ± 0.002 

S15 13.2 ± 0.2 33 ± 1 60 ± 2 5.4 ± 0.3 ˂LOD 0.081 ± 0.001 0.092 ± 0.003 

S16 12.5 ± 0.2 41 ± 1 66 ± 2 8.3 ± 0.2 ˂LOD 0.085 ± 0.009 0.104 ± 0.004 

LOD 0.16 0.08 0.10 0.02 0.002 0.012 0.008 

LOQ 0.54 0.26 0.30 0.05 0.006 0.038 0.024 

 

<LOD
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-1 -1 -1
where in the range: (12.2 – 24.0) mg kg  for Cu, (60 - 125) mg kg  Fe, (5.4 – 17.9) mg kg  for Ni and 

-1
(33 - 50) mg kg  for Zn. All ranges are in good agreement with values reported for Argentinian and Brazilian 

crops.

     Other authors have found statistically significant differences in the metallic content between transgenic 

and non-transgenic soybean seeds, being concentrations of Cu and Fe higher in transgenic seeds by 40 

and 20% respectively [22-23]. Soybean seeds composition is dependent on numerous factors, including 

soil characteristics and water source composition. Once these factors are controlled during the growth, it 

can be expected that differences in concentrations should be related only to genetic modification. In this 

case, all samples were from transgenic origin, so it was not possible to perform such a comparison.

    Regarding non-essential elements, all samples comply with the regional regulation established for Cd 
-1

and As (<0.2 and 0.3 mg kg  respectively). Therefore, soybean seeds analyzed can be considered as safe 

for human consumption. However, five samples showed levels of Pb that exceeded the maximum limit 
-1

admitted of 0.2 mg kg . These are only few batches to take conclusions about food safety, but they provide 

evidence that there must be rigorous controls of toxic elements in food. Coincidentally with the fact that Pb 

is toxic to living organisms, two of the samples with high levels of Pb presented poor germination (<80%), 

particularly sample S03 whose germination was <10%. Germination data of these same batches was 

previously reported by our research group [13].

Correlations within trace elements contents

     The set of data presented in Table II was used to perform the correlations within TEs, where particularly

novel information was presented regarding potentially toxic elements such as As, Cd and Pb. Plants have 

developed mechanisms to prevent their own toxicity by regulating the transportation of the toxic elements 

with chelation or sequestration. Different strategies are performed to deal with high concentration levels of 

TEs in the environment [24-25]. The uptake and efflux of metals ions at cellular level must be strictly 

coordinated with the requirements of the whole plant to maintain homeostasis [26].

   Table III shows Pearson´s correlation coefficients between TEs content. Significantly high positive 

correlations were found for Fe:Cd:Pb (p<0.005), while for Cu:Fe, As:Cd, As:Pb and Zn:Ni the correlations

were also positive but slightly lower (p<0.05). 

Table III. Pearson´s correlation coefficients between TEs content in soybean seeds samples

 Zn Fe Ni Cd Pb As 

Cu 0.2415 0.4328* 0.2609 0.1331 0.3238 -0.1680 

Zn  0.2582 0.4419* -0.1752 -0.0537 -0.0487 

Fe   0.2762 0.7356** 0.8164** 0.3685 

Ni    0.0592 0.1064 -0.0033 

Cd     0.7543** 0.4960* 

Pb      0.4544* 

  * p<0.05 and **p<0.005

    It seems that there are important agonist interactions between potentially toxic elements, as they are 

positively related. In the case of Cd and Pb, it could be explained by the fact they are assimilated from the 

soil by the same family of ATPases, divalent cation transporter class enzymes [26].

     According to Cd and Fe interactions, many studies on plants showed that Cd may displace Fe from 

EDTA complexing agents, leading to diminished Cd bioavailability and increasing the resistance of the plant. 

The inhibition of the uptake of essential elements may contribute to Cd toxicity. But also, the Cd efflux as a 

resistance strategy could lead to the efflux of other metal ions as well. Recent studies found no inhibition of 
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Fe uptake by Cd toxicity, in fact, in this work both elements resulted to be positively related, probably due 

to the presence of specific transporters for each one. Several authors reported metal efflux proteins P-type 

ATPases for Cd and metal uptake proteins Yellow Stripe1-Like (YSL) for Fe [26-27]. 

Correlations between trace elements contents and biochemical parameters

     Biochemical parameters, previously reported by the authors [13], are shown in Table IV. Pearson´s 

correlation coefficients between TEs and biochemical parameters in soybean seeds samples are presented 

in Table V. Regarding TEs content and biochemical parameters a moderate negative correlation between 

Cu and superoxide anion was found. This is in accordance with the fact that Cu integrates numerous 

enzymatic detoxifying systems responsible for controlling the oxidative stress.

Table IV. Biochemical parameters

Samples 
Superoxide* 

(Absorbance560) 
SOD activity * 

(U mg-1 protein) 

DPPH assay* 
(mg antioxidant  
per g dry seed) 

Germination 
(%) 

Vigor 
(%) 

Viability 
(%) 

S01 0.011 49.7 4.6 93 64 99 

S02 0.020 30.7 5.9 80 50 88 

S03  0.018 20.3 5.1 20 33 96 

S04 0.011 47.1 5.4 86 31 89 

S05 0.010 44.5 7.0 80 44 89 

S06 0.028 36.4 5.1 70 60 98 

S07 0.012 80.4 6.5 97 74 99 

S08 0.020 25.4 5.2 70 45 80 

S09 0.024 67.7 5.5 80 53 98 

S10 0.012 39.2 6.4 87 59 93 

S11 0.011 48.0 5.0 97 60 98 

S12 0.018 33.5 5.8 87 44 99 

S13 0.017 57.3 5.9 75 54 88 

S14 0.010 35.2 6.0 74 34 94 

S15 0.018 33.5 5.8 87 44 99 

S16 0.017 34.5 5.4 71 36 90 

 *Results expressed as mean value (n=3) as previously reported by Cardoso et al. [13]. In vitro tests: germination, vigor 

and viability were performed using the tetrazolium test according to ISTA rules [16].

Table V. Pearson´s correlation coefficients between TEs and biochemical parameters in soybean seeds samples

Parameter Cu Zn Fe Ni Cd Pb As 

Superoxide -0.4508* -0.3532 -0.1666 -0.3310 0.2061 0.0825 0.2779 

SOD activity 0.1140 0.2501 -0.2750 -0.0305 -0.3220 -0.1995 -0.5981*** 

DPPH assay 0.5593** 0.2130 0.0385 0.2684 -0.2595 -0.0355 -0.2260 

Germination 0.1470 0.4607 -0.2944 0.0935 0.7549*** -0.5849 -0.4684 

Vigor 0.0177 0.2633 -0.1281 -0.036 0.6162* -0.0515 0.0141 

Viability -0.3209 -0.0207 -0.0155 -0.2652 0.6109* 0.1177 -0.2514 

  * p<0.05, **p<0.025, ***p<0.01

Viera, I.; Machado, I.; Pistón, M.; Torre, M. H.
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   The highly significant positive correlation (p < 0.01) between Cd content and quality parameter 

germination (vigor and viability to a lesser extent) would indicate that Cd content does not produce negative 

effects in the development of the seeds. This is in accordance with findings reported by some authors, who

suggest that a slightly increased level of oxidative stress stimulates germination [28,29]. This theory is also 

supported by Bailly et al. who describes the need of a period of oxidative stress for germination process 

[30]. Small amounts of Cd could lead to this oxidative stress and stimulate germination. It is interesting to

highlight that the positive correlation between Cd and the germination parameters is significantly higher 

than for Cu, being Cu an essential TE. On the other hand, theories about the pattern of Zn and Cd uptake, 

reinforces the hypothesis that plants are adapting to Cd, in certain amount, this element do not cause harm 

to the seed. 
   In the case of Pb, no significant correlations were observed with any of the studied biochemical 

parameters. The Pb uptake by plants might be due to unknown mechanisms. However, evidence has 

proved that Pb taken by the plant and translocated to the upper parts is under the form of Pb-chelate 

complexes like EDTA-Pb and HEDTA-Pb. Once the complex is inside the plant, it stays intact to relieve 

potential toxic effects and allow the plant to continue growing [31]. An interesting observation was the 

negative correlation between Pb and germination showing a toxic effect. 

     No significant correlations were observed for Ni or Zn with the studied biochemical parameters. On the 

other hand, there is a significant negative correlation (p < 0.01) between As content and SOD activity. This 

fact could indicate a negative effect of As over a protective mechanism against free radicals, interfering 

with the scavenging capacity of the SOD. It has been demonstrated that high-affinity as well as constitutive 

low-affinity uptake systems for As are present in plants. As(V) competes with phosphate for its uptake, and 

after it, reduction of intracellular As(V) to As(III) takes place by an As reductase and then it is detoxified 

through complex formation with thiol-rich peptides [32].

CONCLUSIONS

    For the first time, correlations within TEs content in soybean seeds and with biochemical parameters 

related to oxidative stress and seed quality was performed. These results allowed us to increase knowledge 

about TEs effect in biological systems in soybean seeds.

     Particularly, a significantly positive correlation for Cd and parameters like vigor and germination of seeds 

was found suggesting that small amounts of Cd can promote seed growth. Some of the analyzed batches 

had poor germination in field; these batches showed higher levels of Pb, but Pearson´s correlations did not 

show a negative effect on germination or vigor for the rest of the batches. Besides, high positive correlations 

for Fe:Cd:Pb (p<0.005) were found, which can be explained by natural physiological mechanisms of the 

plant.

     Moreover, we would like to highlight from our study that Cd and Pb do not seem to have a negative 

influence on the proper growth of soybean seeds, but their levels should be controlled since food safety 

must be guarantee to consumers and the nutritional value can be altered.

Manuscript received May 6, 2018; revised manuscript received June 29, 2018; accepted July 25, 2018; 

published online October 3, 2018.
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